УДК 544.531:574

Особенности получения и усиления коротких импульсов излучения в активных средах HF-HXЛ

А.В. Авдеев

Аннотация

Предложена оптическая схема формирования импульсно-периодического силового излучения в космической лазерной установке при использовании непрерывной накачки активных сред в генераторах активной среды автономных непрерывных химических HF-лазеров. Обосновано применение в ней системы задающий генератор – усилитель мощности, обеспечивающей получение импульсов лазерного излучения с требуемыми параметрами для очистки околоземного пространства от опасных фрагментов космического мусора с размером от 1 см до 10 см. Найдена величина предельной длины активной среды в оконечном усилителе мощности (260 см), обусловленная при бо́льших значениях возникновением вредного мощного усиленного спонтанного излучения.

Ключевые слова: космическая лазерная установка; автономный непрерывный химический лазер; задающий генератор; усилитель мощности; импульсно-периодический режим генерации излучения.

Введение

Ранее в наших работах [1-3] была показана принципиальная возможность создания космической лазерной установки (КЛУ) на основе созданного в НПО Энергомаш крупноразмерного автономного непрерывного химического НF-лазера (НF-НХЛ) с мощностью излучения в непрерывном режиме до 400 кВт для очистки околоземного космического пространства от опасных фрагментов космического мусора (ФКМ) и увода ФКМ с наиболее опасными размерами от 1 до 10 см с орбиты защищаемых КА. Для достижения высокой эффективности воздействия лазерного излучения на налетающие ФКМ было обосновано использование в лазере импульсно-периодического режима генерации коротких импульсов с длительностью ~10 нс, частотой повторения 10⁵ Гц (определяемой

временем восстановления инверсии населенностей в активной среде за время между соседними импульсами) и энергией >1Дж, достаточной для создания реактивных импульсов отдачи эрозионного плазменного факела, формируемого в фокальном пятне лазерного излучения на поверхности ФКМ.

Для выполнения названных выше жестких требований к параметрам импульснопериодического излучения целесообразно при его получении использовать схему задающий генератор – усилитель мощности (ЗГ-УМ), где зарождающиеся в ЗГ импульсы будут обладать требуемыми временными характеристиками, а затем усиливаться до нужных уровней мощности в УМ. Однако, поскольку активная среда НХЛ существенно отличается по своим физическим свойствам от активных сред других лазеров, ранее использовавшихся для получения коротких импульсов излучения, существует ряд особенностей и ограничений как в получении коротких импульсов в средах НХЛ, так и в расчете их усиления в них. Эти особенности и будут рассмотрены в данной работе.

Оценка удельной энергии наносекундных импульсов излучения, которую можно извлечь из активной среды HF-HXЛ

Известно, что максимальных удельных энергетических параметров излучения в лазерных усилителях можно достичь, если извлечение запасенной в их активной среде энергии происходит в режиме сильного насыщения квантовых переходов. Для адекватного описания такого насыщения нужно решить вопрос о типе уширения используемых спектральных линий. Ввиду малого уровня давлений в активной среде HF-HXЛ (р \leq 5мм рт. ст.) спектральные линии колебательно-вращательных переходов уширены в основном неоднородно, поскольку, $\Delta v_D >> \Delta v_{cr}$. Однако при оцененной величине базы резонатора $L_p \approx 2$ м (величину L_p определяется исходя из условия получения в ЗГ расходимости излучения, близкой к дифракционному пределу) расстояние между аксиальными модами $\Delta v_{m} = c/2L_p \approx 7,5 \cdot 10^7$ Гц сравнимо со столкновительной шириной $\Delta v_{cr} = 5 \cdot 10^6 \cdot p \cdot \sqrt{T/300} \approx 3,5 \cdot 10^7$ Гц. К тому же характерное время τ_{T} поступательно-поступательной релаксации $\tau_{T} \approx \tau_{cr} = (2\pi \cdot \Delta v_{cr})^{-1} = 4,5 \cdot 10^{-9}$ с оказывается меньше требуемой длительности импульса излучения с активной средой будет тождественен взаимодействию с активной средой будет тождественен взаимодействию с активной средой с однородно уширенной линией перехода, но имеющей ширину Δv_{D} .

При проведении оценок примем, что включение добротности резонатора ЗГ происходит мгновенно. При этом нужно учитывать, что требуемая длительность импульса излучения ЗГ ($\tau_{имп} \approx (1...2) \cdot 10^{-8}$ с) оказывается намного меньше характерных времен

колебательной и вращательной релаксаций при типичных уровнях давления в активной среде р≤5мм рт. ст. В этом случае извлекаемую из активной среды энергию на определенном колебательно-вращательном переходе в условиях достаточно сильного насыщения двухуровневой системы можно оценить из выражения, приведенного в [4],

$$dE/dz \approx \alpha_0 E_s, \tag{1}$$

где *E* – плотность энергии импульса, *E*_s – плотность энергии насыщения квантового перехода, α₀ – коэффициент усиления слабого сигнала. Учитывая, что согласно [4] для однородно уширенной линии имеем

$$E_{\rm s} = h\nu/2\sigma_{\rm D},\tag{2}$$

и принимая во внимание, что

$$\alpha_0 = \sigma_D \cdot \Delta N, \tag{3}$$

после интегрирования выражения (1) получим следующую формулу для оценки максимальной удельной энергии, извлекаемой из активной среды на одном колебательновращательном переходе в коротком импульсе на единичной длине активной среды:

$$E/L_{\rm a} = \alpha_0 \cdot E_{\rm s} = h \, v \cdot \Delta N \,/\, 2 \,, \tag{4}$$

где L_a – длина активной среды, ΔN – разность населенностей между уровнями, участвующими в квантовом переходе в двухуровневой системе, σ_D – сечение усиления на колебательно-вращательном переходе с длиной волны λ_0 при доплеровском уширении спектральных линий, которое вычисляется по известной формуле:

$$\sigma_{\rm D} = \frac{\sqrt{\ln 2} \cdot \lambda_0^2 \, \mathcal{A}_{\nu,j}^{\nu+1,j-1}}{4\pi \sqrt{\pi} \Delta \nu_{\rm D}} \,. \tag{5}$$

Здесь $A_{\nu j}^{\nu+1,j-1}$ – коэффициенты Эйнштейна для спонтанного излучения на колебательновращательных переходах *P*-ветви, даваемые соотношением из [5]

$$A_{\nu,j}^{\nu+1,j-1} = \frac{j}{2j-1} \cdot A_{\nu}^{\nu+1}, \tag{6}$$

где j – вращательное квантовое число. Для двух основных колебательных полос $v=1\rightarrow 0$ и $v=2\rightarrow 1$ молекулы HF имеем $A_0^1 = 191 \text{ c}^{-1}$ и $A_1^2 = 340 \text{ c}^{-1}$ [5]. Используя эти данные и учитывая, что усиление имеет место для переходов с j=3...8 [6], для среднего значения j=5 получим

$$\sigma_{\rm D}^{\rm 1-0} = 7,8 \cdot 10^{-16} \,{\rm cm}^2, \quad \sigma_{\rm D}^{\rm 2-1} = 1,4 \cdot 10^{-15} \,{\rm cm}^2.$$
 (7)

Для оценки по формуле (4) удельной извлекаемой из активной среды энергии E/L_a нужно определить величину $\Delta N/2$, которая по физическому смыслу отражает количество

молекул, которое должно перейти с верхнего лазерного уровня на нижний в двухуровневой системе, чтобы уровнять населенности этих уровней. Для этого, согласно выражению (3), нужно знать коэффициент усиления слабого сигнала на каждом колебательно-вращательном переходе α_0 . Усредненное значение α_0^{cp} по колебательно-вращательным переходам HF-HXЛ с щелевой сопловой решеткой можно оценить, взяв за прототип сопловую решетку крупноразмерного HF-HXЛ конструкции НПО Энергомаш с мощностью непрерывного излучения до *P*_{вых}≈400 кВт, имеющего длину активной среды вдоль оптической оси $L_a=135$ см и апертуру выходного излучения $S=5\times40$ см² [7]. Для него мы имеем $P_{\text{вых}} / S = \alpha_0^{\text{ср}} \cdot I_s L_a$, где $I_s \approx 350 \text{ Bt/cm}^2$ – типичная величина интенсивности насыщения квантовых переходов в НF-НХЛ для случая непрерывного режима генерации. Отсюда получим $\alpha_0^{cp} \approx 0.04$ см⁻¹. Эта величина достаточно хорошо согласуется с результатами работы [8], где в расчетах с использованием полной системы уравнений Навье-Стокса было получено распределение вдоль по потоку коэффициента усиления слабого сигнала, максимальное значение которого достигало $\alpha_0^{\text{макс}} \approx 0,06 \text{ см}^{-1}$. Поскольку в ЗГ и усилительных модулях КЛУ предполагается использовать такую же сопловую решетку и те же газодинамические параметры потоков, как и в крупноразмерном НГ-НХЛ, в дальнейших расчетах будем считать, что $\alpha_0^{cp} = 0.04 \text{ см}^{-1}$ и $\alpha_0^{\text{макс}} = 0.06 \text{ см}^{-1}$.

Теперь с учетом (7) можно найти усредненные по колебательно-вращательным переходам начальные (перед моментом генерации короткого импульса) разности населенностей $\Delta N_{\rm H}$ используемых колебательно-вращательных уровней в двух колебательных полосах $v=2\rightarrow 1$ и $v=1\rightarrow 0$, в которых обычно происходит генерация излучения в HF-HXЛ:

$$\Delta N_{2-1}^{H} = \frac{\alpha_{0}^{cp}}{\sigma_{D}^{2-1}} = \frac{0.04 \text{ cm}^{-1}}{1.4 \cdot 10^{-15} \text{ cm}^{2}} = 2.9 \cdot 10^{13} \text{ cm}^{-3},$$
(8)

$$\Delta N_{1-0}^{\rm H} = \frac{\alpha_0^{\rm cp}}{\sigma_{\rm D}^{1-0}} = \frac{0.04 \,\,{\rm cm}^{-1}}{7.8 \cdot 10^{-16} \,\,{\rm cm}^2} = 5.1 \cdot 10^{13} \,\,{\rm cm}^{-3}. \tag{9}$$

При выполнении оценок величины E/L_a будем считать, что на каждом колебательновращательном переходе в конкретной колебательной полосе в результате усреднения величина ΔN^{μ} одинакова. Причем реальную величину $\Delta N/2$, входящую в (4), нужно оценивать, учитывая каскадность переходов в обеих колебательных полосах, которая приведет к перераспределению молекул НF по колебательным уровням при воздействии на активную среду короткого насыщающего импульса излучения. В начальный момент времени перед генерацией короткого импульса излучения будем считать населенность каждого колебательно-вращательного уровня с v=0 равной $N_0^{\rm H}$. Тогда начальная населенность колебательно-вращательных уровней с v=1 составит $N_1^{\rm H} = N_0^{\rm H} + \Delta N_{1-0}^{\rm H}$, а с v=2 станет равной $N_2^{\rm H} = N_0^{\rm H} + \Delta N_{1-0}^{\rm H} + \Delta N_{2-1}^{\rm H}$. После воздействия на активную среду импульса насыщающего излучения населенности всех колебательно-вращательных уровней сравняются и станут равными $N_{\rm cp} = N_0^{\rm H} + 2\Delta N_{1-0}^{\rm H} / 3 + \Delta N_{2-1}^{\rm H} / 3$. Отсюда следует, что на каждом колебательно-вращательном переходе полосы $v=2 \rightarrow 1$ будет излучена удельная энергия

$$h\nu \cdot \Delta N_{2-1}^{\kappa} = h\nu (N_2^{H} - N_{cp}) = h\nu (2\Delta N_{2-1}^{H}/3 + \Delta N_{1-0}^{H}/3) =$$

= 7 \cdot 10^{-20} \,\mathcal{J}\mathcal{K} \cdot (0,66 \cdot 2,9 \cdot 10^{13} \cdot cm^{-3} + 0,33 \cdot 5,1 \cdot 10^{13} \cdot cm^{-3}) = 2,5 \cdot 10^{-6} \,\mathcal{J}\mathcal{K} / \cdot cm^{3}. (10a)

При этом с каждого колебательно-вращательного уровня с v=2 на соответствующие колебательно-вращательные уровни с v=1 дополнительно перейдет количество молекул HF, равное ΔN_{2-1}^{κ} . Вследствие этого населенность колебательно-вращательных уровней с v=1 достигнет величины

$$N_{1}^{\kappa} = N_{0}^{H} + \Delta N_{1-0}^{H} + 2\Delta N_{2-1}^{H} / 3 + \Delta N_{1-0}^{H} / 3 = N_{0}^{H} + 4\Delta N_{1-0}^{H} / 3 + 2\Delta N_{2-1}^{H} / 3.$$

Соответственно на каждом колебательно-вращательном переходе полосы *v*=1→0 будет излучена удельная энергия

$$h \nu \cdot \Delta N_{1-0}^{\kappa} = h \nu (N_1^{\kappa} - N_{cp}) = h \nu (2\Delta N_{1-0}^{\mu} / 3 + \Delta N_{2-1}^{\mu} / 3) =$$

= 7 \cdot 10^{-20} \mathcal{L}\mathcal{K} \cdot (0,66 \cdot 5,1 \cdot 10^{13} \cdot cm^{-3} + 0,33 \cdot 2,9 \ldot 10^{13} \cdot cm^{-3}) = 3,1 \cdot 10^{-6} \mathcal{L}\mathcal{K} / \cdot cm^{3}. (106)

Таким образом, на каждом каскаде из двух последовательных колебательновращательных переходов в полосах $v=2\rightarrow 1\rightarrow 0$ будет излучена суммарная удельная энергия

$$h \nu \cdot \Delta N / 2 = h \nu (\Delta N_{1-0}^{\kappa} + \Delta N_{2-1}^{\kappa}) = h \nu (\Delta N_{1-0}^{H} + \Delta N_{2-1}^{H}).$$

(11)

Принимая во внимание, что в каждой колебательной полосе во взаимодействии с излучением участвует по 6 колебательно-вращательных переходов (с *j*=3...8), суммарная удельная энергия импульса излучения составит в соответствии с (4)

$$E/L_{\rm a} \approx 6h \nu (\Delta N_{\rm 1-0}^{\scriptscriptstyle \rm H} + \Delta N_{\rm 2-1}^{\scriptscriptstyle \rm H}) = 6 \cdot 7 \cdot 10^{-20} \,\mathrm{Дж} \cdot 8 \cdot 10^{13} \,\mathrm{cm}^{-3} \approx 3.3 \cdot 10^{-5} \,\mathrm{Дж/cm}^3$$
.

(12)

Причем, согласно (10а,б), в колебательных полосах $v=2\rightarrow 1$ и $v=1\rightarrow 0$ она распределится следующим образом:

$$E(2-1)/L_{a} = 6h\nu \cdot \Delta N_{2-1}^{\kappa} = 6 \cdot 7 \cdot 10^{-20} \,\mathrm{Дm} \cdot 3, 6 \cdot 10^{13} \,\mathrm{cm}^{-3} = 1, 5 \cdot 10^{-5} \,\mathrm{Jm}/\mathrm{cm}^{3} \,, \tag{13a}$$

$$E(1-0)/L_{a} = 6hv \cdot \Delta N_{1-0}^{\kappa} = 6 \cdot 7 \cdot 10^{-20} \ \text{Дж} \cdot 4,4 \cdot 10^{13} \ \text{cm}^{-3} = 1,8 \cdot 10^{-5} \ \text{Дж/cm}^{3}.$$
(136)

Для проверки достоверности нашего подхода к проведению оценок усредненной по лазерной зоне максимальной энергии короткого импульса, снимаемой с единицы объема активной среды, было проведено сравнение результатов, полученных в [6] при использовании системы уравнений Навье-Стокса в приближении узкого канала, с результатами оценок согласно нашему подходу. Для этого на основе представленных в [6] расчетных распределений коэффициентов усиления слабого сигнала вдоль по потоку нами было оценено его среднее по потоку значение $\alpha_0^{cp} \approx 0.05 \text{ см}^{-1}$. Рассчитанная для этого значения удельная энергия импульса излучения составила у нас 4,15·10⁻⁵ Дж/см³, что хорошо совпало с величиной 3,95·10⁻⁵ Дж/см³, вычисленной в [6].

Следует еще раз подчеркнуть, что выражения (12, 13) можно использовать только в случае большого превышения плотности энергии излучения в резонаторе над ее пороговым значением, когда эффективность извлечения запасенной в активной среде энергии близка к 100%. Известно из [9], что величина такой эффективности с хорошим приближением пропорциональна

$$1 - \alpha_{\text{nop}} / \alpha_0^{\text{cp}}, \tag{14}$$

где α_{nop} – пороговый коэффициент усиления. Следовательно, при проведении оценок удельной энергии импульса излучения, которую можно извлечь из активной среды в резонаторе ЗГ, нужно выражения (12, 13) умножить на величину эффективности резонатора (14).

Расчет параметров импульсного задающего генератора на основе HF-HXЛ

При обосновании параметров резонатора ЗГ нужно исходить из необходимости выполнения 3-х требований, предъявляемых к нему:

1) он должен обеспечивать формирование коротких импульсов излучения с требуемой длительностью;

2) в нем должно быть выполнено условие невозможности возникновения генерации в промежутках времени между соседними импульсами излучения, когда усиливающие свойства активной среды в ЗГ восстанавливаются до первоначального уровня перед воздействием следующего короткого импульса излучения;

3) энергия импульса генерируемого излучения на выходе ЗГ должна быть как можно большой для обеспечения эффективного усиления в УМ.

Анализируя перечисленные выше требования была построена оптическая схема ЗГ, обеспечивающая получение коротких импульсов в НХЛ и произведен расчет всех её основных составляющих элементов. В настоящее время на эту схему подана заявка на получения патента РФ. В этой главе будут кратко рассмотрены основные особенности и параметры данной схемы.

Перечислим сначала основные параметры ЗГ:

- Формирование коротких импульсов в ЗГ осуществляется путем модуляциии добротности его резонатора (R1=0,1 – коэффициент отражения выходного зеркала резонатора, R2=1 – коэффициент отражения глухого зеркала резонатора) с помощью электрооптического затвора на основе эффекта Поккельса.
- В резонатор ЗГ помешено 2 электрооптических затвора. При этом расчет базы такого резонатора дают её величину L^{pean}_p(2 з)=260 см.
- 3. Значение энергии импульса на выходе ЗГ составляет $\approx 6.2 \cdot 10^{-4}$ Дж.

Очевидно, что для достижения требуемой энергии короткого импульса выходного HFизлучения ($W_{вых} \ge 1 \ Дж$) нужно усиливать импульс излучения, выходящий из 3Г. За его прототип могут быть взяты два созданных в НПО Энергомаш генератора активной среды [7]: среднеразмерный с площадью апертуры активной зоны $S_a=(11\times5) \ cm2$ и ее длиной 40 см, где 11 см – высота среза сопловой решетки, $a \sim 5 \ cm$ – протяженность активной зоны по потоку, и крупноразмерный с апертурой активной зоны (40×5) см² и ее длиной $\sim135 \ cm$. С учетом (13) и принимая во внимание, что в каждой колебательной полосе в генерации участвуют по 6 колебательно-вращательных переходов (с j=3...8), полученная энергия импульса на входе в усилитель, равная $W_{вx}=6,2\cdot10^4 \ Дж$, обеспечивает следующую плотность энергии импульса на входе в среднеразмерный генератор активной среды (ГАС) на одном колебательновращательном переходе в колебательных полосах v=1-0 и v=2-1:

$$E_{\rm BX}^{1-0} = \frac{1}{6} W_{\rm ex} \frac{1.5/3.3}{S_{\rm a}} \approx 8.5 \cdot 10-7 \,\,\text{Дж/см}^2,\tag{15a}$$

$$E_{\rm BX}^{2-0} = \frac{1}{6} W_{\rm ex} \frac{1.8/3.3}{S_{\rm a}} \approx 1.10-6 \,\,\text{Дж/cm}^2. \tag{156}$$

Эти плотности энергии даже для среднеразмерного ГАС, не говоря уже о крупноразмерном, довольно существенно уступают плотностям энергии насыщения на каждом колебательно-вращательном переходе в обеих колебательных полосах:

$$E_{\rm s}^{1-0} = \frac{h\nu}{2\sigma_{\rm D}^{1-0}} \approx 4.5 \cdot 10^{-5} \, \text{Дж/cm}^2, \tag{16a}$$

$$E_{\rm s}^{2-1} = \frac{h\nu}{2\sigma_{\rm D}^{2-1}} \approx 2,5.10-5 \, \text{Дж/см}^2.$$
(166)

Таким образом, придется мириться с тем, что даже в среднеразмерном усилителе входная часть активной среды будет плохо насыщена. Отсюда последовал вывод о целесообразности использования в усилительных каскадах сначала предусилителя, а уже после него – оконечного крупноразмерного усилителя с большой апертурой. Поэтому, взяв за прототип существующий среднеразмерный ГАС, было решено оставить без изменений в нем длину сопловой решетки (40 см). Тогда в таком ГАС можно совместить ЗГ с предусилителем коротких импульсов излучения. Аналогично ЗГ такой предусилитель для повышения плотности энергии входного импульса излучения и увеличения длины активной среды также целесообразно сделать двухпроходовым с апертурой пучка 5 см × 5см.

При расчете энергетики предусилителя так же, как и ЗГ, учитывалась возможность недостаточного насыщения его активной среды с протяженностью вдоль оптической оси предусилителя L_a^{npeq} =80 см. Расчет дает на одном колебательно-вращательном переходе в каждой колебательной полосе плотность энергии импульса излучения на выходе предусилителя с L_a^{npeq} =80 см, равную

$$E_{\text{вых}}^{\text{пред}}(1-0)=5,1\cdot10^{-4}$$
 Дж/см², $E_{\text{вых}}^{\text{пред}}(2-1)=1,4\cdot10^{-4}$ Дж/см². (17)

Полная энергия импульсов излучения в каждой колебательной полосе будет в 6 раз больше в соответствии с числом генерирующих колебательно-вращательных переходов (с *j*=3...8).

В оконечном усилителе предполагается использовать два последовательно расположенных модуля ГАС с апертурой активной зоны (20×5) см², которая в 4 раза больше, чем в предусилителе. Несмотря на это, из (17) и (16) следует, что плотность энергии импульса излучения в колебательной полосе v=1-0 на входе оконечного усилителя в ~2,5 раза превосходит плотность энергии насыщения, а в полосе v=2-1 – в 1,5 раза. Следовательно, наше предложение использовать предусилитель в оптической схеме силового канала КЛУ вполне себя оправдывает, поскольку оконечный усилитель практически с самого его входа будет работать в режиме насыщения. А это приведет к более рациональному использованию компонентов лазерного топлива в системе хранения, так как основной расход этих компонентов приходится именно на оконечный усилитель.

Расчет предельной длины активной среды в усилителе коротких импульсов HF-НХЛ излучения

Прежде чем проводить расчеты оконечного усилителя в оптической схеме силового канала КЛУ нужно знать предельную длину активной среды этого усилителя. Ведь при усилении коротких импульсов излучения в активной среде HF-HXЛ мы сталкиваемся с ключевой для энергетики такого усилителя проблемой, ограничивающей энергию импульсов и отсутствующей при непрерывном режиме генерации излучения. Она заключается в возможности возникновения мощного усиленного спонтанного излучения (УСИ) в момент времени между короткими импульсами, когда, как было отмечено выше, усилительные свойства активной среды HF-HXЛ восстанавливаются к приходу следующего импульса излучения. Чтобы избежать вредного влияния этого излучения, нужно понижать коэффициент усиления слабого сигнала α_0 в активной среде усилителя или ее длину L_a^{yc} , а это может существенно ограничить энергию усиливаемых импульсов. Ниже найдем пределы такого ограничения, для чего сначала рассмотрим, следуя работе [10], процесс формирования УСИ в усиливающей среде HF-HXЛ.

Мощность спонтанного шума, испущенного элементом объема dV активной среды на частоте v в частотном интервале dv в телесный угол Ω , определяется, согласно [11], следующим выражением:

$$\frac{dP_{\rm m}(\nu)}{dV} = \frac{h\nu \cdot N_{\nu,\rm j} \cdot A_{\nu,\rm j}^{\nu+1,\rm j-1} \cdot q(\nu) \cdot \Omega}{4\pi} d\nu, \qquad (18)$$

где $N_{v,j}$ – населенность определенного колебательно-вращательного уровня, а q(v) – формфактор доплеровской линии:

$$q(\nu) = \frac{2 \cdot \sqrt{\ln 2}}{\sqrt{\pi} \cdot \Delta \nu_{\rm D}} \cdot \exp\left[-4 \cdot \ln\left(2 \cdot \left(\frac{\nu - \nu_0}{\Delta \nu_{\rm D}}\right)^2\right)\right].$$
(19)

Спонтанный шум, зародившийся в активной среде, будет усиливаться при прохождении по ней. В отсутствие насыщения активной среды зависимость коэффициента усиления слабого сигнала от частоты для доплеровской линии может быть описана следующим образом:

$$\alpha(\nu) = \alpha_0 \exp\left[-4 \cdot \ln\left(2\left(\frac{\nu - \nu_0}{\Delta \nu_D}\right)^2\right)\right].$$
(20)

Понятно, что наибольшей интенсивностью на выходе оконечного усилителя (см. рисунок 1) будут обладать кванты УСИ, зародившиеся около выходного сечения активной среды и прошедшие, усиливаясь, от этого сечения налево к выходному зеркалу ЗГ и, отразившись от него, обратно к выходу из оконечного усилителя. Как уже упоминалось ранее, после выхода из ЗГ перед предусилителем целесообразно установить еще один (внешний) затвор Поккельса с просветленными гранями, чтобы уменьшить коэффициент отражения для спонтанного излучения, до уровней $R_{3 a \text{тв}} = 0,1\%...0,5\%$, когда затвор закрыт. В результате интенсивность УСИ на выходе конечного усилителя должна существенно снизится. Таким образом, выражение для интенсивности УСИ на выходе оконечного усилителя можно представить в следующем виде, учитывая частотные зависимости (19) и (20):

$$I_{\text{BJX}}^{\text{VCH}} = R_{_{3\text{ATB}}} \cdot \int_{0}^{4L_{a}} \int_{-\infty}^{\infty} \frac{dP_{\text{III}}(\nu)}{dV} \ell^{\alpha(\nu)} d\nu \cdot d\ell = \frac{R_{_{3\text{ATB}}} \cdot h\nu_{0} \cdot N_{\nu,j} \cdot A_{\nu,j}^{\nu+1,j-1}\Omega}{4\pi} \times \frac{2 \cdot \sqrt{\ln 2}}{\sqrt{\pi} \cdot \Delta\nu_{\text{D}}} \int_{0}^{4L_{a}} \int_{-\infty}^{\infty} \exp\left[-4 \cdot \ln 2\left(\frac{\nu - \nu_{0}}{\Delta\nu_{\text{D}}}\right)^{2}\right] \cdot \exp\left\{\alpha_{0}\ell \exp\left[-4 \cdot \ln 2\left(\frac{\nu - \nu_{0}}{\Delta\nu_{\text{D}}}\right)^{2}\right]\right\} d\nu \cdot d\ell,$$
(21)

где L_a – длина активной среды в оконечном усилителе. Здесь учтено, что поскольку спектральная линия имеет малую ширину Δv_D , величину кванта hv можно принять равной hv_0 внутри частотного интервала $v_0 \pm \Delta v_D/2$. Далее делая подстановку $v_* = 2 \cdot \sqrt{\ln 2} (v - v_0) / \Delta v_D$, вместо (21) получим выражение

$$I_{\text{BMX}}^{\text{VCH}} = \frac{h v_0 \cdot N_{v,j} \cdot A_{v,j}^{v+1,j-1} \Omega}{4\pi^{3/2}} \int_0^{4L_a} \int_{-\infty}^{\infty} \exp\left[-v_*^2 + \alpha_0 \cdot \ell \cdot \exp\left(-v_*^2\right)\right] dv^* d\ell .$$
(22)

Рисунок 1 – Схематическая диаграмма, показывающая ход интенсивностей прямой и обратной волн усиленного спонтанного излучения в оконечном усилителе мощности длиной

 L_a^{yc} .

Для облегчения дальнейших преобразований нужно оценить величину v_*^2 . Полное усиление $G_0(v_*)$ на частоте уменьшается в обе стороны от центра линии, когда $G_0(v_*)=G_0(0)$, до величины, которая зависит от значения разности $v - v_0$ на рассматриваемой частоте. Найдем частоту, на которой величина $G_0(v_*)$ падает от $G_0(0)$ до $G_0(0)/2$. Обозначим значение v_* , при котором это происходит, равным ω . Тогда исходя из (55) имеем на центральной частоте ($v_*=0$)

$$\alpha_0 \ell = \ln G_0(0), \tag{23}$$

а на частоте $v_* = \omega$

$$-\omega^{2} + \alpha_{0}\ell \cdot e^{-\omega^{2}} = \ln[G_{0}(0)/2].$$
(24)

Решая совместно уравнения (82) и (83), получим

$$e^{-\omega^2} = 1 + \frac{\omega^2 - \ln 2}{\alpha_0 \ell}.$$
 (25)

Логарифмируя обе части (25) и учитывая, что при $\alpha_0 \ell >>1$ величина $(\omega^2 - \ln 2)/\alpha_0 \ell <<1$, преобразуем (25) к виду

$$-\omega^2 = \frac{\omega^2 - \ln 2}{\alpha_0 \ell}$$

Откуда

$$\omega^{2} = \frac{\ln 2}{1 + \alpha_{0} \ell} = \ln 2 \cdot \left[2 \left(\nu - \nu_{0} \right) / \Delta \nu_{D} \right]^{2}.$$
(26)

Величина 2($\nu - \nu_0$) в этом уравнении по физическому смыслу представляет собой ширину контура усиления $\Delta \nu_{\rm VC}$, равную

$$\Delta v_{\rm yC} = \Delta v_{\rm D} / \sqrt{1 + \alpha_0 \ell} \; .$$

Она отражает процесс сужения контура усиления спонтанного излучения при его

усилении. Причем этот контур продолжает оставаться доплеровским. Тогда уравнение (21) может быть преобразовано к довольно простому виду

$$I_{\text{вых}}^{\text{УСИ}} = \frac{R_{\text{затв}} \cdot h\nu_0 \cdot N_{\nu,j} \cdot A_{\nu,j}^{\nu+1,j-1} \cdot \Omega}{4\pi} \cdot \int_0^{2L_a^{\text{yc}}} \frac{\Delta \nu_{\text{YC}}}{\Delta \nu_{\text{D}}} e^{\alpha_0 \ell} d\ell =$$
$$= \frac{R_{\text{затв}} \cdot h\nu_0 \cdot N_{\nu,j} \cdot A_{\nu,j}^{\nu+1,j-1} \cdot \Omega}{4\pi} \cdot \int_0^{2L_a^{\text{yc}}} \frac{e^{\alpha_0 \ell}}{\sqrt{1 + \alpha_0 \ell}} d\ell .$$
(27)

Выражение (22), полученное в работе [10] для случая отсутствия насыщения в активной среде, также было упрощено в [12], где без достаточного обоснования было предположено, что $v_*^2 \ll 1$. В нашем подходе это вытекает из большой длины активной среды усилителя, когда $\alpha_0 \ell \gg 1$. Тогда $\exp(-v_*^2)$ в формуле (26) может быть разложена в ряд, после чего интеграл по частоте в (22) можно последовательными преобразованиями привести к следующему виду [12]:

$$\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp\left[-v_*^2 + \alpha_0 \ell - \alpha_0 \ell v_*^2\right] dv_* = \frac{1}{\sqrt{\pi}} e^{\alpha_0 \ell} \cdot \int_{-\infty}^{\infty} e^{-v_*^2(1+\alpha\ell)} dv_* = \frac{e^{\alpha_0 \ell}}{\sqrt{1+\alpha_0} \ell}$$

При получении окончательно результата было учтено, что при замене переменных $t = v_* \sqrt{1 + \alpha_0 \ell}$, когда $d v_* = dt / \sqrt{1 + \alpha_0 \ell}$, возможны следующие упрощения:

$$\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-\nu_*^{2(1+\alpha_0\ell)}} \, d\nu_* = \frac{1}{\sqrt{1+\alpha_0\ell}} \cdot \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-t^2} \, dt = \frac{1}{\sqrt{1+\alpha_0\ell}} \, dt$$

В рамках работы [10] с использованием полной системы уравнений Навье-Стокса были вычислены населенности колебательно-вращательных уровней, переходы с которых обладали наибольшим усилением: $N_{v=1,j=3}=2\cdot10^{14}$ см⁻³, $N_{v=2,j=3}=10^{14}$ см⁻³. Соответствующие этим переходам коэффициенты Эйнштейна для спонтанного излучения (*P*-ветвь) составляют $A_{v=0,j=4}^{v=1,j=3} = 109$ с⁻¹, $A_{v=1,j=4}^{v=2,j=3} = 194$ с⁻¹. Для максимального уменьшения телесного угла Ω , в котором усиливается спонтанное излучение, в схеме усилителя нужно предусмотреть угловые селекторы излучения в виде пространственных фильтров. В этом случае можно надеяться, что по каждой из координат апертуры телесный угол УСИ будет ограничен 2-мя дифракционными пределами. Тогда

$$\Omega = \theta_{x} \cdot \theta_{y} = 4 \cdot \frac{\lambda}{h_{x}} \cdot 4 \cdot \frac{\lambda}{h_{y}} = 16 \cdot \frac{\lambda^{2}}{h_{x} \cdot h_{y}} = 1,25 \cdot 10^{-8} \text{ стерад}.$$
(28)

Здесь протяженность лазерной зоны по потоку $h_x = 5$ см, а высота апертуры модулей усилителя $h_y=20$ см. Используя полученные выше значения, найдем величину коэффициента перед интегралом в выражении (22) при $R_{3aтB}=0.5\%$

$$D = \frac{R_{_{3aTB}} \cdot h \nu_0 \cdot N_{_{v,j}} \cdot A_{_{v,j}}^{_{v+1,j-1}} \cdot \Omega}{4\pi} =$$
$$= \frac{5 \cdot 10^{-3} \cdot 7 \cdot 10^{-20} \ \text{Дж} \cdot 2 \cdot 10^{14} \ \text{cm}^{-3} \cdot 109 \ \text{c}^{-1} \cdot 1,25 \cdot 10^{-8}}{4\pi} = 7,6 \cdot 10^{-15} \ \text{Bt/cm}^3.$$

Напомним, что максимальное значение коэффициента усиления слабого сигнала составляет $\alpha_0^{\text{макс}} = 0,06 \text{ см}^{-1}$, поэтому во всех выражениях нужно считать, что $\alpha_0 \equiv \alpha_0^{\text{max}}$. Если не учитывать сужение спектральной линии при усилении, выражение (21) для интенсивности УСИ на выходе усилителя $I_{\text{вых}}^{\text{УСИ}}(1)$ с длиной активной среды $\alpha_a^{\text{УС}}$ примет простой вид

$$I_{\rm Bbix}^{\rm YCH}(1) = D \int_{0}^{2L_{\rm a}^{\rm YC}} e^{\alpha_0^{\rm Makc} l} dl \approx \frac{D}{\alpha_0^{\rm Makc}} \cdot (e^{2\alpha_0^{\rm Makc} L_{\rm a}^{\rm YC}} - 1) = 6 \cdot 10^3 \,\mathrm{Bt/cm}^2$$
(29)

при $L_{a}^{yC} = 340$ см (индекс 1 означает, что при вычислениях не учитывалось ни сужение спектральной линии при усилении, ни насыщение активной среды). Полученная величина $I_{Bbix}^{yCU}(1)$ намного превышает типичную интенсивность насыщения $I_s \approx 300$ BT/cm². Это свидетельствует о необходимости учитывать в расчетах и насыщение активной среды, и сужение спектральной линии при усилении, для чего нужно выражение (21) для этого случая записать в следующем виде:

$$I_{\rm BMX}^{\rm YCH}(3) = D \int_{0}^{2L_{s}^{2c}} \frac{\exp\{\alpha_{0}\ell / \left[1 + \left(I^{+} + I^{-}\right) / I_{s}\right]\}}{\sqrt{1 + \alpha_{0}\ell} / \left\{1 + \left[\left(I^{+} + I^{-}\right) / I_{s}\right]\}}} d\ell , \qquad (30)$$

где I^+ и I^- – соответственно интенсивности прямой и обратной волн УСИ, проходящих по одному и тому же участку активной среды. Вычислить такой интеграл напрямую невозможно, поскольку интенсивности прямой и обратной волн сложным образом зависят от текущей длины активной среды ℓ . В работе [12] была сделана попытка учета влияния насыщения. Однако в ней не учитывалось влияние суммарной интенсивности прямой и обратной волн УСИ друг на друга. Кроме того, недостаточно корректным представляется использование при расчете интенсивности УСИ в этой работе усредненных по поперечному

сечению пучков суммарных по спектру значений коэффициентов усиления. Если бы зависимость полного усиления G от α₀ не носила экспоненциального характера, то такое усреднение было бы допустимым, что мы и использовали в приведенном выше расчете разности населенностей ΔN на колебательно-вращательных переходах, поскольку α_0^{cp} коэффициента слабого усредненные значения усиления сигнала прямо пропорциональны величине ΔN . В случае экспоненциальной зависимости наиболее сильно усиливаться будут прежде всего переходы, где α₀ максимальны. Проведенные расчеты показали, что в колебательных полосах v=1→0 и v=2→1 наибольшим усилением при использовании типичного состава топливной композиции будут обладать переходы Р-ветви с соответствующим изменением вращательного квантового числа *j*=3→*j*=4. Следовательно, именно на этих переходах интенсивность УСИ будет наибольшей, и если найти условия, когда она слабо будет влиять на разность населенностей на переходе с j=3 на j=4, то на остальных переходах она будет влиять еще меньше.

Для более корректного по сравнению с работой [12] учета насыщения в активной среде предлагается следующая схема расчетов. Разделим путь, который проходит спонтанное излучение по активной среде от его зарождения до выхода из усилителя, на три последовательно расположенных участка, как показано на рисунке 1. На первом (начальном) участке длиной L_1 , где происходит зарождение спонтанного излучения, интенсивность УСИ в направлении справа налево вычисляется с учетом насыщения активной среды только за счет обратной волны УСИ I^- , поскольку на этом участке зарождающаяся волна I^+ будет иметь малую интенсивность:

$$I_{\rm Bbix}^{L_1} = I_{\rm Bx}^{L_2} = \frac{D}{R_{\rm 3aTB}} \int_0^{L_1} \exp\left[\alpha_0 \ell / \left(1 + I^- / I_s\right)\right] \cdot d\ell .$$
(31)

Интенсивность $I_{\text{вых}}^{L_1}$ на входе начального участка одновременно служит входной интенсивностью УСИ $I_{\text{вх}}^{L_2}$ для следующего (второго) участка длиной $L_2 = L_a^{\text{ус}} - L_1$. На этом участке происходит усиление прямой и обратной волн УСИ, зародившегося на участке L_1 . Для этого процесса запишем уравнение переноса для волн, бегущих слева направо I^+ и справа налево I^- (рисунок 1), считая, как было показано выше, что линии усиления уширены однородно:

$$\frac{dI^{+}}{dz} = \frac{\alpha_0 I^{+}}{1 + (I^{+} + I^{-})/I_s},$$
(32a)

$$-\frac{dI^{-}}{dz} = \frac{\alpha_0 I^{-}}{1 + (I^+ + I^-)/I_s}.$$
(326)

Деля одно из уравнений (32) на другое и интегрируя, получим, что в каждой точке на отрезке L₂

$$I^+ \cdot I^- = \text{const.} \tag{33}$$

Подставляя (28) в уравнения (27), преобразуем их к виду

$$\frac{\mathrm{d}I^{+}}{I^{+}} = \frac{\alpha_0 \,\mathrm{d}z}{1 + \left(I^{+} + \mathrm{const}/I^{+}\right)/I_{\mathrm{s}}},\tag{34a}$$

$$\frac{dI^{-}}{I^{-}} = \frac{\alpha_0 dz}{1 + (I^{-} + \text{const}/I^{-})/I_s}.$$
(346)

Обозначив интенсивность прямой волны I^+ на границах участка L_2 (см. рисунок 1) через $I_{BX}^{L_1}$ и I_2 , а интенсивность обратной волны I^- на этих же границах через I_3 и $I_{Bbix}^{L_2}$, и интегрируя уравнения (34 а,б) по длине L_2 , находим для прямой волны

$$\alpha_0 L_2 = \ln(I_2/I_{ex}^{L_1}) + I_2/I_s - I_{ex}^{L_1}/I_s - \operatorname{const}(I_s/I_2 - I_s/I_{ex}^{L_1})$$
(35a)

и для обратной

$$\alpha_{0}L_{2} = \ln\left(I_{Gbix}^{L_{2}}/I_{3}\right) + I_{Gbix}^{L_{2}}/I_{s} - I_{3}/I_{s} - \operatorname{const}\left(I_{s}/I_{Gbix}^{L_{2}} - I_{s}/I_{3}\right).$$
(356)

Для нахождения зависимости $I_{\text{вых}}^{L_2}$ от $I_{\text{вых}}^{L_1}$ удобно константу в уравнениях (35а) и (30б) представить в виде const= $I_{\text{вых}}^{L_2} \cdot I_{\text{вых}}^{L_1}$. Тогда складывая уравнения (35а) и (35б) друг с другом, и принимая во внимание, что $I_3=I_2 \cdot R_{3aTB}$, после несложных преобразований получим уравнение, связывающее интенсивность УСИ $I_{\text{вых}}^{L_2}$ на выходе участка длиной L_2 с интенсивностью $I_{\text{вых}}^{L_1}$ на входе в этот участок:

$$\alpha_{0}L_{2} = \frac{1}{2}\ln\left(\frac{I_{\text{BMX}}^{2L_{2}}}{R_{3\text{ATB}} \cdot I_{\text{BMX}}^{L_{1}}}\right) + \frac{\sqrt{I_{\text{BMX}}^{L_{1}} \cdot I_{\text{BMX}}^{2L_{2}}}}{I_{\text{s}}}\frac{(1 - R_{3\text{ATB}})}{\sqrt{R_{3\text{ATB}}}} + \left(I_{\text{BMX}}^{2L_{2}} - I_{\text{BMX}}^{L_{1}}\right)/I_{\text{s}}.$$
(36)

Далее рассматриваем распространение обратной волны I^- на третьем участке усилителя длиной $L_3=L_1$, пренебрегая, как было отмечено выше, вкладом прямой волны в насыщение активной среды. Соответствующее уравнение примет вид

$$\frac{\mathrm{d}I^-}{\mathrm{d}z} = \frac{\alpha_0 I^-}{\left(1 + I^- / I_\mathrm{s}\right)}.$$

Его решение аналогично решению уравнений (32). В результате получим

$$\alpha_0 L_1 = \ln\left(\frac{I_{\text{Bbix}}^{\text{YCH}}}{I_{\text{Bbix}}^{2L_2}}\right) + \frac{I_{\text{Bbix}}^{\text{YCH}}}{I_s} - \frac{I_{\text{Bbix}}^{2L_2}}{I_s},$$
(37)

где $I_{\rm вых}^{\rm УСИ}$ – интенсивность УСИ на выходе усилителя.

Таким образом, выше дано обоснование достаточно достоверных расчетов интенсивности УСИ $I_{\text{вых}}^{\text{УСИ}}$, учитывающих насыщение активной среды на участках с длиной L_2 и L_3 , но не учитывающих насыщение активной среды на участке с длиной L_1 и сужение спектральных линий переходов при усилении на всех трех рассматриваемых участках. Для учета этих факторов предлагается решение уравнения (30) осуществить методом последовательных приближений, заключающемся в следующем. На первом этапе расчетов не учитывается ни насыщение активной среды на начальном участке L_1 , ни сужение спектральных линий переходов при усилении на всех участках активной среды. Этот случай отмечен индексом (1) при расчете интенсивностей УСИ на различных участках активной среды усилителя. Тогда на выходе участка с L_1 вместо (31) будем иметь

$$I_{\rm Bbix}^{L_1}(1) = I_{\rm Bx}^{L_2}(1) = \frac{D}{R_{\rm 3aTB}} \cdot \int_{0}^{L_1} e^{\alpha_0^{\rm Makc\ell}} d\ell = \frac{D}{R_{\rm 3aTB}} \cdot \alpha_0^{\rm Makc} \left(e^{\alpha_0^{\rm MakcL_1}} - 1 \right).$$
(38)

Как было отмечено выше, основной вклад в величину интенсивности УСИ на выходе усилителя с большой длиной вносит начальный участок, поскольку затравочное спонтанное излучение, зарождающееся в нем, испытывает наибольшее усиление при прохождении активной среды усилителя. Поскольку эффективная длина L_1 такого участка заранее не известна, имеет смысл проварьировать в расчетах его длину, чтобы найти такое значение L_1 , когда выходная интенсивность УСИ перестает существенно изменяться с ростом L_1 . Используя полученные значения $I_{\text{вых}}^{L_1}(1)$ как входные параметры при решении трансцендентного уравнения (36) были получены величины интенсивности УСИ $I_{\text{вых}}^{2L_2}(1)$ после прохода по участку с L_2 , в прямом и обратном направлениях, а при решении другого трансцендентного уравнения (37) – интенсивность УСИ на выходе усилителя $I_{\text{вых}}^{\text{УСИ}}(1)$. В таблице 1 представлены результаты расчетов на первом этапе интенсивности УСИ на различных участках активной среды усилителя при варьировании длины начального участка L_1 . Полученные на первом этапе данные далее были использованы в качестве входных параметров в расчетах на втором этапе, когда насыщение активной среды на участке с длиной L_1 учитывалось таким образом, что уравнение (31) принимало вид:

$$I_{\rm Bbix}^{L_1}(2) = I_{\rm Bx}^{L_2}(2) = \frac{D}{R_{_{3\rm aTB}}} \cdot \int_{0}^{L_1} \exp\left(\frac{\alpha_0^{\rm Makc} \cdot \ell}{\left(1 + I_{\rm cp}^{L_1}(1)/I_{\rm s}\right)}\right) d\ell , \qquad (39)$$

где $I_{\rm cp}^{L_1}(1) = \left(I_{\rm Bbix}^{\rm YCH}(1) + I_{\rm Bbix}^{2L_2}(1) \right) / 2.$

Таблица 1 – Величины интенсивности УСИ на различных участках активной среды усилителя без учета насыщения активной среды и сужения спектральных линий при усилении (*R*_{затв}=0,5%)

<i>L</i> ₁ , см	$I_{\rm bbix}^{L_1}(1)$, BT/cm ²	<i>L</i> ₂ , см	$I_{\rm вых}^{2L_2}(1)$, Вт/см 2	$I_{\rm bbix}^{\rm УСИ}(1)$, Вт/см ²
30	1,3.10 ⁻¹⁰	310	454	818
50	$4,8.10^{-10}$	290	334	927
70	1,7.10-9	270	225	1028
90	5,6.10-9	250	128	1102

Пересчитав с помощью уравнения (39) величину $I_{BbIX}^{L_1}(2)$, учитывающую уже насыщение на участке с L_1 , далее заново пересчитываются новые значения $I_{BbIX}^{2L_2}(2)$ из решения уравнения (36) и $I_{BbIX}^{YCU}(2)$ из решения уравнения (37). Затем эти значения подставляются в уравнение (39) и проводятся следующие итерации по пересчету интенсивностей $I_{BbIX}^{L_1}(2)$, $I_{BbIX}^{2L_2}(2)$ и $I_{BbIX}^{YCU}(2)$ до тех пор, пока значения этих интенсивностей на текущей и предыдущей итерациях не станут отличаться друг от друга менее чем на 1%. Результаты расчета величин $I_{BbIX}^{L_1}(2)$, $I_{BbIX}^{2L_2}(2)$ и $I_{BbIX}^{YCU}(2)$ и $I_{BbIX}^{YCU}(2)$ на последней итерации приведены в таблице 2.

Таблица 2 – Величины интенсивности УСИ на различных участках активной среды усилителя при учете насыщения активной среды и сужения спектральных линий при усилении (*R*_{затв}=0,5%)

<i>L</i> ₁ , см	$I_{\rm bbix}^{L_1}(2), \ { m Bt/cm^2}$	<i>L</i> ₂ , см	$I_{\rm bbix}^{2L_2}(2), \ { m Bt/cm}^2$	$I_{\rm bbix}^{\rm ycu}(2), \ { m Bt/cm}^2$	$a_{\rm H}, \mathrm{CM}^{-1}$	I ^{УСИ} _{вых} (3), Вт/см ²
30	6,2.10-11	310	372	715	0,05315	118,2

50	1,3.10 ⁻¹⁰	290	210	734	0,0532	122,1
70	$2,2.10^{-10}$	270	139	854	0,05343	141,9
90	$3,7\cdot10^{-10}$	250	17,5	584	0,05285	97,2

На третьем этапе расчетов помимо насыщения также было учтено сужение спектральных переходов в процессе усиления согласно формуле (27). Для ее использования в расчетах нужно знать реальный коэффициент усиления активной среды при тех уровнях насыщения, которые обусловили получение значений $I_{\rm Bbix}^{\rm YCH}(2)$, приведенных в таблице 2. Поэтому реальный коэффициент усиления при насыщении $\alpha_{\rm H}$ можно оценить, решая уравнение

$$I_{\text{BMX}}^{\text{YCH}}(2) = D \cdot \int_{0}^{2L_a^{\text{yc}}} e^{\alpha_{\text{H}} \cdot \ell} d\ell = \frac{D}{\alpha_{\text{H}}} \left(e^{2\alpha_{\text{H}} \cdot L_a^{\text{yc}}} - 1 \right)$$
(40)

относительно $\alpha_{\rm H}$, беря величины $I_{\rm Bbix}^{\rm YCU}(2)$ из таблицы 2, где после расчетов по формуле (40) также приведены соответствующие величины $\alpha_{\rm H}$. Подставляя их в уравнение (27) были найдены интенсивности УСИ $I_{\rm Bbix}^{\rm YCU}(3)$ на выходе усилителя с длиной активной среды $L_{\rm a}^{\rm yc}=340$ см при учете как насыщения в активной среде, так и сужения спектральных линий при усилении.

Сравнивая расчетные величины $\alpha_{\rm H}$ в таблице 2 с максимальным значением коэффициента усиления слабого сигнала $\alpha_0^{\rm Makc} = 0,06 \,{\rm cm}^{-1}$, видим, что потери запасенной в активной среде удельной энергии за счет наличия УСИ не превышают 10% при выбранной длине активной среды в усилителе $L_a^{\rm yc} = 340 \,{\rm cm}$. Конечно, можно увеличить $L_a^{\rm yc}$ и свыше 340 см, но тогда будут увеличиваться и потери запасенной в активной среде удельной энергии. Что приведет к падению эффективности использования запаса компонентов лазерного топлива в системе хранения. А это крайне нежелательно.

Расчет энергетических характеристик оконечного усилителя коротких импульсов HF-излучения на основе ГАС с плоской и цилиндрической сопловыми решетками

В качестве усилителя мощности рассмотрим оконечный усилитель, построенный на основе крупноразмерного ГАС с плоской сопловой решеткой, в качестве прототипа - ГАС

типа H00 с размерами апертуры (5×40) см² и длиной активной среды вдоль оптической оси, равной L_a^{yc} =135 см. Для компенсации тяги выхлопного потока целесообразно ГАС оконечного усилителя разбить по высоте на две части и расположить каждую часть симметрично относительно центральной оси КА около его оболочки, чтобы обеспечить выхлоп отработанных газов каждой части ГАС непосредственно в окружающее пространство без необходимости использования в данном случае сверхзвуковых диффузоров, как предложено в работе [13]. Учитывая, что, как было определено ранее, длина активной среды предусилителя составляет L_a^{npeq} =80 см, а общая длина усилительных каскадов на основе плоскоблочного ГАС не должна превышать L_a^{yc} =240 см, отсюда длину активной среды оконечного усилителя определяется, как $L_a^{ox. yc} = L_a^{yc} - L_a^{npeq} = 260$ см.

Таким образом, оптическая схема данного плоскоблочного оконечного усилителя включает в себя два последовательно расположенных ГАС с размерами апертуры (5×20) см² и общей длиной усиливающей активной среды L_a^{yc} (окон)=(2×130) см=260 см. Для уменьшения влияния аберраций целесообразно предусмотреть использование в оптической схеме пространственных фильтров пропускание которых резко зависит от направления распространения излучения. Они представляют собой систему из двух софокусных зеркал и помещенной в их общем фокусе диафрагмы с малым отверстием.

Поскольку из предусилителя выходит пучок с размерами аппретуры $S_a^{npeq}=5$ см×5 см, то для полного заполнения выходной апертуры оконечного усилителя с площадью $S_a^{\text{ok.yc}}=20$ см×5 см излучением необходимо выходящий из предусилителя пучок расширить в четыре раза вдоль высоты сопловой решетки. Это предполагается осуществить с помощью цилиндрического согласующего телескопа. Четырехкратное увеличение апертуры пучка приведет соответственно к четырехкратному уменьшению плотности энергии импульса излучения на каждом колебательно-вращательном переходе на входе в оконечный усилитель по сравнению с плотностью энергии импульса излучения на выходе предусилителя. Таким образом будем иметь

$$E_{\rm BX}^{\rm ok.yc} (1-0) \approx 0.25 E_{\rm Bbix}^{\rm nped} (1-0) \approx 1.3 \cdot 10^{-4} \, \text{Дж/см}^2,$$
$$E_{\rm BX}^{\rm ok.yc} (2-1) \approx 0.25 E_{\rm Bbix}^{\rm nped} (2-1) \approx 3.5 \cdot 10^{-5} \, \text{Дж/см}^2. \tag{41}$$

Для вычисления полной энергии импульса излучения $W_{\rm BX}^{\rm BMX}$ (пл) на выходе описанного

выше плоскоблочного оконечного усилителя воспользуемся формулами

$$E_{\rm BX}^{\rm oK.yc}(1-0) = E_{\rm s}^{1-0} \cdot \ln\left\{1 + \left[\exp\left(\frac{E_{\rm BX}^{\rm oK.yc}(1-0)}{E_{\rm s}^{1-0}}\right) - 1\right] \cdot \exp(2\sigma_{\rm D}^{1-0} \cdot \Delta N_{\rm 1-0}^{\rm K} \cdot L_{\rm a}^{\rm oK.yc})\right\},\tag{42a}$$

$$E_{\rm BX}^{\rm OK.yc}(2-1) = E_{\rm s}^{2-1} \cdot \ln\left\{1 + \left[\exp\left(\frac{E_{\rm BX}^{\rm OK.yc}(2-1)}{E_{\rm s}^{2-1}}\right) - 1\right] \cdot \exp(2\sigma_{\rm D}^{2-1} \cdot \Delta N_{2-1}^{\rm K} \cdot L_{\rm a}^{\rm OK.yc})\right\}.$$
(426)

Учитывая, что в каждой колебательной полосе генерация происходит на 6-ти колебательно-вращательных переходах, в результате получим

$$W_{\text{имп}}^{\text{вых}} = 6 \cdot S_{a}^{\text{ок. ус}} \cdot E_{s}^{1-0} \cdot \ln \left\{ 1 + \left[\exp \left(\frac{E_{\text{вх}}^{\text{ок. ус}} (1-0)}{E_{s}^{1-0}} \right) - 1 \right] \cdot \exp \left(2 \cdot \sigma_{\text{D}}^{1-0} \cdot \Delta N_{1-0}^{\kappa} \cdot L_{a}^{\text{ok. yc}} \right) \right\} + 6 \cdot S_{a}^{\text{ok. yc}} \cdot E_{s}^{2-1} \cdot \ln \left\{ 1 + \left[\exp \left(\frac{E_{\text{вх}}^{\text{ok. yc}} (2-1)}{E_{s}^{2-1}} \right) - 1 \right] \cdot \exp \left(2 \cdot \sigma_{\text{D}}^{2-1} \cdot \Delta N_{2-1}^{\kappa} \cdot L_{a}^{\text{ok. yc}} \right) \right\}.$$
(43)

Подставляя в данное выражение величины E_s^{1-0} и E_s^{2-1} согласно (16 а,б), значения $E_{Bx}^{\text{ок.ус.}}(1-0)$ и $E_{Bx}^{\text{ок.ус.}}(2-1)$ в соответствии с (37), величины σ_D^{1-0} и σ_D^{2-1} согласно (7) и величины ΔN_{1-0}^{κ} и ΔN_{2-1}^{κ} согласно (14а,б), найдем полную энергию импульса НF-излучения на выходе оконечного усилителя на основе плоскоблочного ГАС типа H00 с длиной активной среды $L_a^{yc}=260$ см $W_{umn}^{Bbix}(n_{J})\approx 1$ Дж, что удовлетворяет сформулированным выше требованиям к энергии импульса излучения для воздействия на опасные ФКМ.

Выводы и рекомендации

Разработана оптическая схема системы формирования импульсно-периодической генерации излучения в КЛУ, обеспечивающая получение импульсов лазерного излучения с требуемыми параметрами для очистки околоземного пространства от опасных фрагментов космического мусора с размером от 1 см до 10 см. Обосновано применение в ней системы задающий генератор – усилитель мощности излучения. Показано, что для обеспечения достаточного уровня насыщения активной среды в усилительных каскадах нужно помимо оконечного усилителя НF-излучения использовать также и двухпроходовый предусилитель с длиной одного прохода 40 см. Найдена величина предельной длины активной среды в усилителе коротких импульсов HF-излучения, обусловленная возникновением (при ее больших размерах) мощного усиленного спонтанного излучения в момент времени между соседними импульсами излучения, когда усилительные свойства активной среды в HF-

усилителе восстанавливаются до прежнего уровня, что может привести к существенному снижению запасенной в активной среде НГ-усилителя энергии ко времени прихода очередного импульса излучения на вход усилительных каскадов. Расчеты интенсивности такого излучения, проведенные при использовании тех же параметров активной среды, что и в крупноразмерном НГ-НХЛ, созданном в ОАО "НПО Энергомаш", показали, что при допустимых потерях запасенной в активной среде энергии не более 10% общая длина активной среды в усилительных каскадах не должна превышать 340 см. Таким образом, длина активной среды в оконечном усилителе за вычетом длины активной среды в предусилителе не должна превышать 260 см.

Автор выражает особую благодарность своему научному руководителю А.С. Башкину за предложенную тему и полезные консультации при выполнении данной работы.

* Работа выполнена в рамках реализации ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009 – 2013 годы. (Гос. контракт от 9 июня 2011г. №14.740.11.1166).

Библиографический список

- Авдеев А.В., Башкин А.С., Шушарин Е.И. Анализ параметров космической лазерной установки на основе НF-НXЛ для очистки околоземного пространства // Труды НПО Энергомаш. – М., 2010. – №27. – С. 281–301.
- 2. Авдеев А.В. Требования к параметрам космической лазерной установки на основе НF-НХЛ для очистки околоземного пространства от опасных фрагментов космического мусора// "Электронный журнал «Труды МАИ», выпуск № 45, 2011 г.
- А.В. Авдеев, А.С. Башкин, Б.И. Каторгин, М.В. Парфеньев, "Анализ возможности очистки околоземного пространства от опасных фрагментов космического мусора с помощью космической лазерной установки на основе автономного непрерывного химического HF-лазера", *Квант. электроника*, 2011, 41 (7), 669–674.
- 4. Звелто О. Принципы лазеров. М.: Мир, 1990. 558с.
- 5. Каторгин Б.И., Степанов А.А., Щеглов В.А. Основы кинетики, газодинамики и оптики неравновесных сред. Т. 1. М.: МАИ, 2002. 610с.
- Александров Б.П., Степанов А.А., Щеглов В.А. Энергетические возможности импульсно-периодического сверхзвукового непрерывного НГ-лазера // Квантовая электроника. – М., 1996. – Т. 23, №6. – С. 490–494.

- Путь в ракетной технике (НПО Энергомаш имени академика В.П. Глушко) / Под ред. академика РАН Б.И. Каторгина. – М.: Машиностроение, Машиностроение-Полет, 2004. – С. 165–170.
- Bashkin A.S., Kiselev A.S., Nekrasov K.K., Popov E.N. Theoretical Optimization of Power Performance of Master Oscillator– Power Amplifier System with the Use of cw HF Chemical Laser and Laser Beam-Director Telescope with Nonlinear-Optical Compensation for Distortions // Proc. SPIE. – 1998. – V. 3574. – P. 341–347.
- 9. Химические лазеры / Под ред. Р. Гросса и Дж. Бота. М.: Мир, 1980. 832с.
- Bashkin A.S., Maslov M.S. Determination of gain properties of long length cw HF chemical lasers' active media with the use of power characteristics of the amplified spontaneous emission // Technical Digest of XII International Symposium on Gas Flow and Chemical Lasers. 1998. 31 August 5 September. St. Petersburg, Russia.
- 11. Yariv A. Quantum Electronics. 2nd ed. New York, John Wiley & Sons, 1995. P. 294.
- Некрасов К.К. Расчетно-теоретическое исследование влияния суперлюминесценции на характеристики излучения в усилителе мощности на базе НF-НХЛ // Труды НПО Энергомаш. – М., 2001. – №19. – С. 335–357.
- Авдеев А.В., Башкин А.С., Курдюков М.В., Парфеньев М.В., Семенов С.Н. Выхлопные устройства космических лазерных установок на основе фтороводородных непрерывных химических лазеров // Труды НПО Энергомаш. – М., 2011. – №28.

Сведения об авторе

Авдеев Алексей Валерьевич - аспирант Московского Авиационного Института (Государственного технического университета), МАИ 125871, г. Москва, Волоколамское шоссе, д.4, e-mail: <u>alex021894@mail.ru</u>