УДК 681.325.3; 531.77.082

Математическая модель преобразователя двухполярного напряжения в частоту, его вероятностная информация при работе на малых напряжениях в условиях фоновой помехи

А. А. Захаров.

Аннотация

Рассматривается математическое описание характеристик преобразователя двухполярного напряжения в частоту (ПДНЧ) в условиях входной фоновой помехи. Построена математическая модель ПДНЧ при использовании характеристик однополярных преобразователей. На основании этой модели получены выражения математического ожидания (МО) средней выходной частоты ПДНЧ (в зависимости от постоянной составляющей входного напряжения) и экстремальных значений отклонения этой частоты от МО. Проведена линеаризация выражения МО для малых входных сигналов.

Ключевые слова

математическая модель, преобразователь двухполярного напряжения в частоту, преобразователь однополярного напряжения в частоту, малые входные напряжения, работа в условиях фоновой помехи, разностная (или выходная) частота, вероятностная информация, средняя частота, математическое ожидание, значения отклонений, датчик угловой скорости, динамически настраиваемый гироскоп.

1. Постановка задачи

Для удобства выполнения систем навигации и управления движущихся объектов при большом количестве измеряемых параметров используются одинаковые аналого-цифровые преобразователи (в том числе и преобразователи напряжение – частота). Так, при передаче исходной информации по каналам акселерометров и гироскопических датчиков угловых скоростей (ДУС), находит применение устройство, включающее однотипные преобразователи двухполярного напряжения в частоту (ПДНЧ) [1-3].

Отдельно входящий ПДНЧ имеет достаточную контролируемую линейность в диапазоне значительных входных напряжений. Однако, в области малых сигналов, зависимость выходной частоты от напряжения разработчиками ПДНЧ обычно не оговаривается [3]. Для повышения точности работы указанных систем за счёт проведения алгоритмической коррекции погрешностей датчиков информации, необходимы результаты измерений также в области их нулевых сигналов. При этом фоновая (периодическая) составляющая сигнала ДУС (помеха) преобладает над полезной (постоянной) составляющей, и закон влияния переменной составляющей на коэффициент преобразования полезного сигнала – неизвестен, что может вызвать искажение информации. Эти замечания особенно актуальны при преобразовании малых сигналов ДУС, построенных на базе динамически настраиваемых гироскопов (ДНГ) [4,5]. Здесь, вследствие имеющейся динамической неуравновешенности ротора ДНГ (из-за технологических затруднений балансировки) и обеспечения быстродействия ДУС (т.е. расширения его частотной полосы пропускания), амплитуда фоновой помехи может быть больше измеряемого сигнала в десятки и сотни раз. Настоящая работа помогает решить задачу использования ПДНЧ в области малых сигналов, и посвящена получению математической модели (ММ) ПДНЧ, включающей зависимости параметров информации с ПДНЧ от входного аналогового сигнала (например, с ДУС – ДНГ) в условиях частотной помехи.

2. Структура ПДНЧ и связанной с ним аппаратуры, особенности выходной информации

Рассматриваемый ПДНЧ [2, 3] имеет два выхода, по одному из которых (по выходу "f⁺") выдаются импульсы с частотой f⁺[Гц] при положительном входном напряжении. По другому выходу ("f⁻") выдаются импульсы с частотой f⁻[Гц] при отрицательном напряжении. Покажем выходную характеристику (пренебрегая её зависимостью от температуры) ПДНЧ, построенного на преобразователях однополярного напряжения в частоту (ПОНЧ) [1, 2, 6].

Схема реализации ПДНЧ на двух идентичных положительно определенных ПОНЧ представлена на рис. 1,*a* [2]. Вход одного преобразователя (ПОНЧ 1) непосредственно подключен к входному напряжению ПДНЧ, а вход второго (ПОНЧ 2) связан с входом ПДНЧ через инвертирующий усилитель (с единичным коэффициентом усиления и не имеющий запаздывания). Выход " f⁺" является выходом ПОНЧ 1, выход " f⁻" – ПОНЧ 2. Выходы "f⁺" и "f⁻" ПДНЧ подключают к соответствующим входам реверсивного счетчика (PC) (см. рис. 1, δ , где показана измерительная аппаратура). PC суммирует текущую разность между числами импульсов N⁺ и N⁻, поступающих с выходов ПДНЧ "f⁺" и "f⁻" соответственно. Пусть t – время [c]. Запуск и счет PC начинается при его нулевом исходном состоянии в начальный момент времени t_H. Через время цикла T (в конечный момент времени t_K)

$$t_{\kappa} = t_{H} + T$$

счет заканчивается с получением результата суммирования, числа N_{T_n} (где n – порядковый номер цикла). Это число в виде кода записывается в оперативную память блока преобразования в код (ПК). После чего происходит обнуление счетчика и повторение подсчета импульсов в следующем цикле. Практически считаем время t_{κ} моментом начала следующего цикла. Информация " N_{T_n} " хранится в блоке ПК (в течение времени T до момента прихода из PC нового числа $N_{T_{n+1}}$) с периодическим поступлением её в блок информации (БИ) для штатной работы систем движущегося объекта. Для технологических целей (например, при настройке ДУС) выход ПК подключен к сумматору Σ , где значения N_{T_n} суммируются за время S [c]. Результат суммирования (N_S) выдается в цифровом виде на дисплее (Д) (или на экране монитора) технологической аппаратуры (TA).

Найдем математическое выражение некоторого числа N_T , входящего в последовательность N_{T_n} . Для этого запишем выражение текущей разности чисел импульсов, поступивших с выходов "f⁺" и "f⁻" ПДНЧ с момента времени t_H до текущего момента t, считая значения f⁺, f⁻, N⁺ и N⁻ функциями времени.

$$N^{+}(t) - N^{-}(t) = \int_{t_{H}}^{t} f^{+}(t) \cdot dt - \int_{t_{H}}^{t} f^{-}(t) \cdot dt = \int_{t_{H}}^{t} f_{pa3}(t) \cdot dt,$$

где $f_{pa3}(t)$ – разностная (или выходная) частота [Гц] ПДНЧ (с учетом знака). $f_{pa3}(t) = f^+(t) - f^-(t).$ (2.2) Обозначим интеграл от разностной частоты за время цикла T (от $t_{\rm H}$ до $t_{\rm K})$ через $V_{\rm T}$:

$$V_{\rm T} = \int_{t_{\rm H}}^{t_{\rm H} + T} f_{\rm pa3}(t) dt .$$
(2.3)

Подсчитанное PC за время T число N_T импульсов (отличающееся от интеграла V_T на ошибку дискретизации) и средняя разностная частота f_T [Гц], определенная за цикл T, равны:

$$N_{\rm T} = V_{\rm T} \pm 1; \qquad (2.4)$$

$$f_{T} = \frac{N_{T}}{T}.$$

(2.5)

Значения f_T изменяются в соответствии с медленно изменяющейся постоянной составляющей входного напряжения (например, пропорциональной угловой скорости объекта) ПДНЧ. То есть функция f_T(t) отслеживает "скользящее среднее" напряжение. При этом переменная составляющая напряжения (фоновая помеха) – неинформативна.

Измерения с неизменной постоянной составляющей напряжения ПДНЧ (например, при преобразовании постоянных угловых скоростей) относятся к технологическим и проводятся в течение времени S, которое намного больше T и кратно времени T: $S = K_S \cdot T$, где K_S - коэффициент кратности (целое число).

В сумматоре Σ (см. рис. 1, δ) происходит непрерывное суммирование значений N_{Tn} в течение времени S. Поскольку импульсы дискретизации при суммировании чисел N_{Tn} взаимно компенсируются (кроме начального и последнего импульсов), то суммирование можно заменить интегрированием:

$$N_{S} = \sum_{n=1}^{n=K_{S}} N_{Tn} = V_{S} \pm 1,$$
 где $V_{S} = \int_{t_{H}}^{t_{H}+S} f_{pa3}(t) \cdot dt.$
(2.6)

Средняя разностная частота (f_S) [Гц], определенная за интервал S, равна

$$f_{S} = \frac{N_{S}}{S}.$$
(2.7)

3. Построение модели ПДНЧ

Используя известные [2, 7] характеристики ПОНЧ, из рис. 1,*а* запишем выходные параметры ПДНЧ в виде:

$$\begin{cases} f^{+} = 0, & \Pi p \mu \ U_{BX}^{+} \le 0; \\ f^{+} = f_{0}^{+} + K_{f} \cdot U_{BX}^{+}, \Pi p \mu \ U_{BX}^{+} > 0; \end{cases} \begin{cases} f^{-} = 0, & \Pi p \mu \ U_{BX}^{-} \le 0; \\ f^{-} = f_{0}^{-} + K_{f} \cdot U_{BX}^{-}, \Pi p \mu \ U_{BX}^{-} > 0, \end{cases}$$

$$(3.1)$$

где: f_0^+ , f_0^- – начальные постоянные смещения [Гц] характеристик ПОНЧ 1 и ПОНЧ 2; U_{Bx}^+ , U_{Bx}^- – напряжения [мВ] на входах ПОНЧ 1 и ПОНЧ 2, соответственно; K_f – коэффициент преобразования [Гц/мВ], считаем постоянным и одинаковым для ПОНЧ 1 и ПОНЧ 2.

Характеристики (3.1) показаны на рис. 2,*a*,*б* (соответственно) сплошными линиями. В области малых входных сигналов практические характеристики [2] имеют нелинейность, показанную штриховыми линиями. Основываясь на опыте работы с ПДНЧ [3], в дальнейшем будем предполагать, что используемые ПОНЧ 1 и ПОНЧ 2 имеют характеристики с нелинейностью выпуклостью вверх ($f_0^+ > 0$, $f_0^- > 0$). Для уточнения практической нулевой зоны предлагается аппроксимация этих характеристик наклонными прямыми (см. рис 3,*a*,*б*). Соответственно выходные параметры ПДНЧ (вместо (3.1)) выражаются как:

$$f^{+} = \begin{cases} 0, & \text{при} \quad U_{\text{BX}}^{+} \leq 0; \\ K_{0f} \cdot U_{\text{BX}}^{+}, & \text{при} \quad 0 < U_{\text{BX}}^{+} \leq U_{\text{rp}}^{+}; \ f^{-} = \begin{cases} 0, & \text{при} \quad U_{\text{BX}}^{-} \leq 0; \\ K_{0f} \cdot U_{\text{BX}}^{-}, & \text{при} \quad 0 < U_{\text{BX}}^{-} \leq U_{\text{rp}}^{-}; \\ f_{0}^{+} + K_{f} \cdot U_{\text{BX}}^{+}, & \text{при} \quad U_{\text{BX}}^{+} > U_{\text{rp}}^{+}; \end{cases} \begin{cases} 0, & \text{при} \quad U_{\text{BX}}^{-} \leq 0; \\ K_{0f} \cdot U_{\text{BX}}^{-}, & \text{при} \quad 0 < U_{\text{BX}}^{-} \leq U_{\text{rp}}^{-}; \\ f_{0}^{-} + K_{f} \cdot U_{\text{BX}}^{-}, & \text{при} \quad U_{\text{BX}}^{-} > U_{\text{rp}}^{-}; \end{cases} \end{cases}$$
(3.2)

где: K_{0f} – средний угловой коэффициент [Гц/мВ] касательной к реальной характеристике вблизи нулевого входного напряжения (принимается постоянным и одинаковым для ПОНЧ 1 и ПОНЧ 2); U_{rp}^+ , U_{rp}^- – граничные значения входных напряжений [мВ] (соответственно ПОНЧ 1 и ПОНЧ 2), выше которых коэффициент преобразования изменяется из K_{0f} на K_f , причем

$$U_{rp}^{+} = \frac{f_{0}^{+}}{K_{0f} - K_{f}}; \quad U_{rp}^{-} = \frac{f_{0}^{-}}{K_{0f} - K_{f}}.$$
(3.3)

5

Пусть входное напряжение ПДНЧ равно $u_{BX}(t)$ [мВ].

$$u_{BX}(t) = U_{\pi} + u_{\pi ep}(t),$$

(3.4)

где: U_{π} , $u_{\pi ep}(t)$ – постоянная и переменная составляющие [мВ] напряжения на входе ПДНЧ.

В соответствии с логикой работы схемы рис. 1,а

$$U_{BX}^{+} = u_{BX}(t); \quad U_{BX}^{-} = -u_{BX}(t).$$

При подстановке последних выражений в систему (3.2) имеем

$$f^{+}(t) = \begin{cases} 0, & \text{при} \quad u_{\text{BX}}(t) \leq 0; \\ K_{0f} \cdot u_{\text{BX}}(t), & \text{при} \quad 0 < u_{\text{BX}}(t) \leq U_{\text{rp}}^{+}; \ f^{-}(t) = \begin{cases} 0, & \text{при} \quad u_{\text{BX}}(t) \geq 0; \\ -K_{0f} \cdot u_{\text{BX}}(t), & \text{при} \quad 0 > u_{\text{BX}}(t) \geq -U_{\text{rp}}^{-}; \\ f_{0}^{-} - K_{f} \cdot u_{\text{BX}}(t), & \text{при} \quad u_{\text{BX}}(t) \geq -U_{\text{rp}}^{-}. \end{cases}$$

Расположим записи по мере уменьшения $u_{BX}(t)$ и используем (2.2).

При
$$u_{BX}(t) > U_{\Gamma p}^{+}$$
, $f^{+}(t) = f_{0}^{+} + K_{f} \cdot u_{BX}(t)$, $f^{-}(t) = 0$, $f_{pa3}(t) = f_{0}^{+} + K_{f} \cdot u_{BX}(t)$.
При $U_{\Gamma p}^{+} \ge u_{BX}(t) > 0$, $f^{+}(t) = K_{0f} \cdot u_{BX}(t)$, $f^{-}(t) = 0$, $f_{pa3}(t) = K_{0f} \cdot u_{BX}(t)$.
При $0 \ge u_{BX}(t) \ge -U_{\Gamma p}^{-}$, $f^{+}(t) = 0$, $f^{-}(t) = -K_{0f} \cdot u_{BX}(t)$, $f_{pa3}(t) = K_{0f} \cdot u_{BX}(t)$.
При $u_{BX}(t) < -U_{\Gamma p}^{-}$, $f^{+}(t) = 0$, $f^{-}(t) = f_{0}^{-} - K_{f} \cdot u_{BX}(t)$, $f_{pa3}(t) = -f_{0}^{-} + K_{f} \cdot u_{BX}(t)$.

Запишем $f_{pa3}(t)$ в удобном виде:

$$f_{pa3}(t) = \begin{cases} f_0^+ + K_f \cdot u_{BX}(t), & \text{при} & u_{BX}(t) > U_{rp}^+; \\ K_{0f} \cdot u_{BX}(t), & \text{при} & U_{rp}^+ \ge u_{BX}(t) \ge -U_{rp}^-; \\ -f_0^- + K_f \cdot u_{BX}(t), & \text{при} & u_{BX}(t) < -U_{rp}^-. \end{cases}$$
(3.5)

При отсутствии на входе ПДНЧ переменной составляющей, из (3.4) следует $u_{BX}(t) = U_{\Pi}$. И зависимость (3.5) имеет вид

$$f_{pa3}(U_{\pi}) = \begin{cases} f_0^+ + K_f \cdot U_{\pi}, & \text{при} & U_{\pi} > U_{rp}^+; \\ K_{0f} \cdot U_{\pi}, & \text{при} & U_{rp}^+ \ge U_{\pi} \ge -U_{rp}^-; \\ -f_0^- + K_f \cdot U_{\pi}, & \text{при} & U_{\pi} < -U_{rp}^-. \end{cases}$$

$$(3.6)$$

График характеристики ПДНЧ $f_{pa3}(U_{\Pi})$ (при $u_{nep}(t)=0$) (3.6) построен на рис. 3,*в* толстой ломаной линией. Там же штриховой линией показан практический ход, отвечающий рис. 3,*a*,*б*.

4. Математическая модель и параметры информации ПДНЧ при наличии фоновой помехи

Пусть $u_{nep}(t)$ (фоновая помеха с периодом $T_{nep}[c]$) из (3.4) изменяется по закону

$$u_{\text{nep}}(t) = U_{\text{M}} \cdot \sin(\omega \cdot t - \omega \cdot T_{\text{X}}),$$

где: U_м, ω, (-ω·T_x) – соответственно амплитуда [мВ], угловая частота [рад/с], начальная фаза [рад]. Причем

$$T_{\text{nep}} = 2 \cdot \pi / \omega$$

(4.2)

Тогда напряжение на входе ПДНЧ из (3.4),(4.1) равно $u_{BX}(t) = U_{\Pi} + U_{M} \cdot \sin(\omega \cdot t - \omega \cdot T_{X}).$ (4.3)

Графики функции $u_{Bx}(t)$ (для условия $|U_{\Pi}| \le U_{M}$) приведены на рис. 4, а также (для одного периода) на рис. 5,*а*. Видно, что период $T_{\Pi ep}$ составлен из промежутков (T^{+} , T^{-}) времени [c] воздействия (соответственно) положительных и отрицательных значений $u_{Bx}(t)$: $T_{\Pi ep} = T^{+} + T^{-}$. (4.4)

Причем эти промежутки отвечают зависимостям

$$T^{+} = \begin{cases} 0, & \Pi p u \quad U_{\Pi}/U_{M} > 1; \\ \frac{T_{\Pi e p}}{\pi} \cdot \arccos\left(\frac{-U_{\Pi}}{U_{M}}\right), & \Pi p u \quad 1 \ge U_{\Pi}/U_{M} \ge -1; \quad T^{-} = \begin{cases} T_{\Pi e p}, & \Pi p u \quad U_{\Pi}/U_{M} > 1; \\ \frac{T_{\Pi e p}}{\pi} \cdot \arccos\left(\frac{U_{\Pi}}{U_{M}}\right), & \Pi p u \quad 1 \ge U_{\Pi}/U_{M} \ge -1; \\ 0, & \Pi p u \quad U_{\Pi}/U_{M} < -1. \end{cases}$$

$$(4.5)$$

Момент времени T_x отмечен на рис. 4. Для удобства исследования T_x выбран ($T_x > 0$ при $U_{II} > 0$) таким, что $u_{BX}(t = 0) = 0$. И из рис. 4 следует

$$\omega \cdot T_{x} = \frac{\omega \cdot T^{+}}{2} - \frac{\pi}{2}.$$

$$(4.6)$$

$$M_{3} (4.3) c \text{ учетом } (4.6) \text{ имеем}$$

$$u_{BX}(t) = U_{\Pi} + U_{M} \cdot \cos\left(\omega \cdot t - \frac{\omega \cdot T^{+}}{2}\right).$$

$$(4.7)$$

На рис. 5,*а* отмечены моменты t₁,t₂...t₄, при которых соблюдаются следующие равенства с использованием граничных значений (3.3)

$$u_{BX}(t_1, t_2) = U_{\Gamma p}^+; \ u_{BX}(t_3, t_4) = -U_{\Gamma p}^-.$$

Откуда, используя (4.7), имеем:

$$t_{1} = \frac{T^{+}}{2} - \frac{1}{\omega} \cdot \arccos \quad a; \quad t_{2} = \frac{T^{+}}{2} + \frac{1}{\omega} \cdot \arccos \quad a;$$

$$t_{3} = \frac{T^{+}}{2} + \frac{1}{\omega} \cdot \arccos \quad b; \quad t_{4} = T_{\text{nep}} + \frac{T^{+}}{2} - \frac{1}{\omega} \cdot \arccos \quad b,$$

(4.8)

где:
$$a = \frac{U_{rp}^+ - U_{\pi}}{U_M}; b = \frac{-U_{rp}^- - U_{\pi}}{U_M}$$
.

3 а м е ч а н и е. В зависимости от значения U_{π} , линии графиков U_{rp}^+ и $-U_{rp}^-$ могут не пере-

секаться с графиком $u_{BX}(t)$. Поэтому введены критические значения U_{π} :

$$U_{ng} = -U_{M} - U_{rp}^{-}; \ U_{nh} = -U_{M} + U_{rp}^{+}; \ U_{nk} = U_{M} - U_{rp}^{-}; \ U_{nl} = U_{M} + U_{rp}^{+}.$$
(4.10)

На рис. 6 показаны оси изменения U_{π} (с этими критическими значениями) для различных соотношений между U_{M} и U_{rp}^{+} , U_{rp}^{-} . На рис. 6,*a* (для $U_{M} < U_{rp}^{+}$, $U_{M} < U_{rp}^{-}$) при $U_{\Pi} < U_{\Pi g}$, $U_{\Pi} > U_{\Pi l}$, $U_{\Pi k} < U_{\Pi} < U_{\Pi h}$ пересечение графика $u_{Bx}(t)$ с графиками U_{rp}^{+} или $-U_{rp}^{-}$ не происходит. В диапазонах $U_{\Pi g} < U_{\Pi} < U_{\Pi k}$ и $U_{\Pi l} < U_{\Pi} < U_{\Pi l}$ имеет место одно пересечение $u_{Bx}(t)$ (только с одним из графиков $-U_{rp}^{-}$ или U_{rp}^{+}). На рис.6,*б* (для $U_{M}/U_{rp}^{+} \approx U_{M}/U_{rp}^{-} \approx 0$) диапазоны с одним пересечением стягиваются в точки (соответственно $U_{\Pi} \approx -U_{rp}^{-}$ и $U_{\Pi} \approx U_{rp}^{+}$). Этому рис. 6,*б* отвечают зависимости (3.6). На рис. 6,*s* (для $U_{M} > U_{rp}^{+}, U_{M} > U_{rp}^{-}$) отмечены также значения а и b, соответствующие критическим значениям U_{Π} . При $U_{\Pi} < U_{\Pi g}$ и $U_{\Pi} > U_{\Pi l}$, пересечение $U_{Bx}(t)$ с U_{rp}^{+} или $-U_{rp}^{-}$ не имеет места. В диапазоне $U_{nh} \le U_{nk}$ график $u_{Bx}(t)$ пересекается с обоими графиками U_{rp}^{+} и $-U_{rp}^{-}$. В диапазонах $U_{\Pi g} \le U_{\Pi} < U_{\Pi h}$ и $U_{nk} < U_{\Pi} \le U_{\Pi l}$ имеется пересечение только с одним из графиков U_{rp}^{+} или $-U_{rp}^{-}$. Рис. 4, 5,*a* соответствуют диапазону $U_{\Pi h} \le U_{\Pi} \le U_{nk}$, где имеют смысл выражения (4.8). В разделе 4 рассматриваются выражения применительно к этому, практическому, случаю значений U_{Π} .

В промежутках между моментами, указанными в (4.8), значения $u_{BX}(t)$ находятся в следующих интервалах, и обеспечиваются соответствующие (из (3.6)) выражения $f_{pa3}(t)$.

$$\begin{split} & 0 < u_{\text{BX}}(t) \leq U_{\text{Tp}}^{+}, \quad \text{при} \quad 0 < t \leq t_{1}; \\ & u_{\text{BX}}(t) > U_{\text{Tp}}^{+}, \quad \text{при} \quad t_{1} < t < t_{2}; \\ & U_{\text{Tp}}^{+} \geq u_{\text{BX}}(t) > 0, \quad \text{при} \quad t_{2} \leq t < T^{+}; \\ & 0 \geq u_{\text{BX}}(t) \geq -U_{\text{Tp}}^{-}, \quad \text{при} \quad T^{+} \leq t \leq t_{3}; \\ & u_{\text{BX}}(t) < -U_{\text{Tp}}^{-}, \quad \text{при} \quad t_{3} < t < t_{4}; \\ & -U_{\text{Tp}}^{-} \leq u_{\text{BX}}(t) \leq 0, \quad \text{при} \quad t_{4} \leq t \leq T_{\text{nep}}; \end{split}$$

График периодической функции $f_{pa3}(t)$ для одного периода, соответствующий рис. 5,*a*, представлен на рис. 5,*б*. Покажем зависимость $f_{pa3}(t)$ для любого момента времени и преобразуем её.

$$f_{pa3}(t) = \begin{cases} K_{f} \cdot u_{BX}(t) + (K_{0f} - K_{f}) \cdot u_{BX}(t), & \text{при} & k \cdot T_{\text{пер}} < t \le t_{1} + k \cdot T_{\text{пер}}; \\ K_{f} \cdot u_{BX}(t) + f_{0}^{+}, & \text{при} & k \cdot T_{\text{пер}} + t_{1} < t < t_{2} + k \cdot T_{\text{пер}}; \\ K_{f} \cdot u_{BX}(t) + (K_{0f} - K_{f}) \cdot u_{BX}(t), & \text{при} & k \cdot T_{\text{пер}} + t_{2} \le t < t_{3} + k \cdot T_{\text{пер}}; \\ K_{f} \cdot u_{BX}(t) - f_{0}^{-}, & \text{при} & k \cdot T_{\text{пер}} + t_{3} < t < t_{4} + k \cdot T_{\text{пер}}; \\ K_{f} \cdot u_{BX}(t) + (K_{0f} - K_{f}) \cdot u_{BX}(t), & \text{при} & k \cdot T_{\text{пер}} + t_{4} \le t \le (k+1) \cdot T_{\text{пер}}; \end{cases}$$

$$(4.11)$$

Представим (4.11) в виде суммы

$$f_{pa3}(t) = K_f \cdot u_{BX}(t) + f_{0pa3}(t),$$

(4.12)

где $f_{0pa3}(t)$ – нулевая составляющая разностной частоты:

$$f_{0pa3}(t) = \begin{cases} \begin{pmatrix} K_{0f} - K_{f} \end{pmatrix} \cdot u_{BX}(t), & \text{при} & k \cdot T_{nep} < t \le t_{1} + k \cdot T_{nep}; \\ f_{0}^{+}, & \text{при} & k \cdot T_{nep} + t_{1} < t < t_{2} + k \cdot T_{nep}; \\ \begin{pmatrix} K_{0f} - K_{f} \end{pmatrix} \cdot u_{BX}(t), & \text{при} & k \cdot T_{nep} + t_{2} \le t < t_{3} + k \cdot T_{nep}; \\ -f_{0}^{-}, & \text{при} & k \cdot T_{nep} + t_{3} < t < t_{4} + k \cdot T_{nep}; \\ \begin{pmatrix} K_{0f} - K_{f} \end{pmatrix} \cdot u_{BX}(t), & \text{при} & k \cdot T_{nep} + t_{3} < t < t_{4} + k \cdot T_{nep}; \\ \begin{pmatrix} K_{0f} - K_{f} \end{pmatrix} \cdot u_{BX}(t), & \text{при} & k \cdot T_{nep} + t_{4} \le t \le (k+1) \cdot T_{nep}. \end{cases}$$

(4.13)

График $f_{0pa3}(t)$ (для одного периода) приведён на рис. 5,*в*. Значение интеграла от функции $f_{0pa3}(t)$ за период T_{nep} равно площади под графиком $f_{0pa3}(t)$ с учетом знака:

$$\int_{0}^{T_{\Pi ep}} f_{0pa3}(t) \cdot dt = V_1 + V_2,$$

(4.14)

где: V₁, V₂ – интегралы, соответствующие на рис. 5,*в* отмеченным площадям (соответственно заштрихованных треугольников и незаштрихованных прямоугольников).

Используя (4.7),(4.8) и симметрию $f_{0pa3}(t)$ (см. рис. 5) относительно моментов времени t_A и t_B (соответственно максимума и минимума функций $u_{Bx}(t)$ и $f_{pa3}(t)$) находим.

$$V_{1} = 2 \cdot \int_{0}^{t_{1}} f_{0pa3}(t) dt + 2 \cdot \int_{T^{+}}^{t_{3}} f_{0pa3}(t) \cdot dt = \frac{2 \cdot U_{M}}{\omega} \cdot (K_{0f} - K_{f}) \cdot \left[\frac{U_{\Pi}}{U_{M}} \cdot (\arccos \ b - \arccos \ a) + \sqrt{1 - b^{2}} - \sqrt{1 - a^{2}}\right];$$

$$V_{2} = \int_{t_{1}}^{t_{2}} f_{0}^{+} dt + \int_{t_{3}}^{t_{4}} - f_{0}^{-} dt = \frac{2}{\omega} \cdot \left(f_{0}^{+} \cdot \arccos \ a + f_{0}^{-} \cdot \arccos \ b - f_{0}^{-} \cdot \pi\right).$$

$$(4.15)$$

Среднее значение (f_{0cp}) функции $f_{0pa3}(t)$ за период T_{nep} (см. рис. 5,*в*) из (4.2),(4.14)

 $f_{0cp} = \frac{V_1 + V_2}{T_{nep}} \,.$

(4.16)

Введём граничные отношения u_{rp}^+ , u_{rp}^- :

$$u_{rp}^{+} = U_{rp}^{+} / U_{M}; \qquad u_{rp}^{-} = U_{rp}^{-} / U_{M}.$$

При стремлении этих значений к нулю, имеем:

из (4.9)
$$\lim_{\substack{u_{rp}^+ \to 0}} a = \lim_{\substack{u_{rp}^- \to 0}} b = -U_{\Pi}/U_{M}$$
,
(4.17)
из (4.15),(4.17) $\lim_{\substack{v_1 = 0}} V_1 = 0$, $\lim_{\substack{v_2 = 2}} V_2 = \frac{2}{V_1} \left[(f_0^+ + f_0^-) \cdot \arccos\left(-\frac{U_{\Pi}}{V_1}\right) - f_0^- \cdot \pi \right].$

 $\begin{array}{ccc} & & & \text{if } (\tau, \tau, \tau), (\tau, \tau, \tau) & & \text{if } v_1 = 0, & \text{if } v_2 = -\cdot \left[(t_0 + t_0) \cdot \arccos \left(-\frac{-\pi}{U_M} \right) - f_0^- \cdot \pi \right], \\ & & & u_{rp}^+ \to 0 & & u_{rp}^- \to 0 \end{array}$

При этом приближенное выражение ($f_{0cp_{\Pi p}}$) функции f_{0cp} из (4.16) с учётом (4.2) и

найденных пределов, равно

$$f_{0cp} \approx f_{0cp_{\Pi p}} = \lim_{\substack{u_{Tp}^{+} \to 0 \\ u_{Tp}^{-} \to 0}} V_{2} / T_{\Pi ep} = \frac{f_{0}^{+} + f_{0}^{-}}{\pi} \cdot \arccos\left(-\frac{U_{\Pi}}{U_{M}}\right) - f_{0}^{-}.$$
(4.18)

С привлечением (4.4),(4.5) находим дополнительное выражение:

$$f_{0cp_{\Pi p}} = \frac{f_0^+ \cdot T^+ - f_0^- \cdot T^-}{T_{\Pi e p}} \,.$$

При малых значениях u_{rp}^+ , u_{rp}^- из (4.5),(4.17) следует: $a \approx b \approx \cos \frac{\pi \cdot T^+}{T_{nep}}$. Тогда из

(4.2),(4.8) $t_1 \approx 0$, $t_2 \approx t_3 \approx T^+$, $t_4 \approx T_{nep}$, и из (4.11) можно считать

$$f_{pa3}(t) \approx f_{pa3}_{np}(t) = \begin{cases} K_{f} \cdot u_{BX}(t) + f_{0}^{+}, & \text{при} \quad k \cdot T_{nep} < t \le T^{+} + k \cdot T_{nep}; \\ K_{f} \cdot u_{BX}(t) - f_{0}^{-}, & \text{при} \quad k \cdot T_{nep} + T^{+} < t \le (k+1) \cdot T_{nep}, \end{cases}$$

$$(4.19)$$

где $f_{\text{pas}_{\text{пр}}}(t)$ – приближенная зависимость разностной частоты от времени.

График $f_{pa3}_{np}(t)$ показан на рис. 5,*г*. В условиях малости значений u_{rp}^+, u_{rp}^- , шириной диапазонов $U_{ng} \le U_n < U_{nh}$, $U_{nk} < U_n \le U_{nl}$ (рис. 6,*в*), по сравнению с U_M , можно пренебречь, считая $U_{ng} \approx U_{nh} \approx -U_M$, $U_{nk} \approx U_{nl} \approx U_M$ (см. рис. 6.*г*), и использовать только оставшиеся приближённо расширенные диапазоны ($U_n < -U_M, -U_M < U_n < U_M, U_n > U_M$). 5. Вероятностный подход к выходной информации ПДНЧ, связанной с влиянием фоно-

вой помехи

Для определения параметров выходной информации ПДНЧ (при любом значении $U_{\rm II}/U_{\rm M}$) найдем выражение интеграла ($V_{\rm T}$), соответствующего главной части числа $N_{\rm T}$ (2.4), используя (2.3) и разбивая интервал интегрирования на две неравные части.

$$V_{T} = \int_{t_{H}}^{t_{H}+T} f_{pa3}(t) \cdot dt = \int_{t_{H}}^{t_{H}+K_{UT}\cdot T_{IRP}} \int_{t_{H}}^{t_{H}+K_{UT}\cdot T_{IRP}} f_{pa3}(t) \cdot dt + \int_{t_{H}+K_{UT}\cdot T_{IRP}}^{t_{H}+T} f_{pa3}(t) \cdot dt = V_{TO} + V_{TD} , \qquad (5.1)$$

где: Кцт – целая часть (ЦЧ) отношения $\,T/\,\,T_{nep}$,

Кцт = ЦЧ(
$$T/T_{nep}$$
), Кцт = 0, 1, 2...; (5.2)

 V_{TO} – основная составляющая интеграла V_T (с интервалом интегрирования, равным целому числу периодов T_{nep}); V_{TD} – добавочная составляющая V_T (с интервалом интегрирования менее T_{nep}).

$$V_{TO} = \int_{t_H}^{t_H + K_{UT} \cdot T_{\Pi ep}} \int_{t_H}^{t_H + K_{UT} \cdot T_{\Pi ep}} \int_{t_H + K_{UT} \cdot T_{\Pi ep}}^{t_H + K_{UT} \cdot T_{\Pi ep}} f_{pa3}(t) \cdot dt .$$
(5.3)

12

Поскольку (см. (4.11)) $f_{pa3}(t) - функция периодическая, с периодом <math>T_{nep}$, то основная составляющая (V_{TO}) не зависит от момента начала измерений, и для неё в (5.3) принимаем t_{H} =0:

$$V_{\text{TO}} = \int_{0}^{K_{\text{UT}} \cdot T_{\text{Tep}}} f_{\text{pa3}}(t) \cdot dt = K_{\text{UT}} \cdot \int_{0}^{T_{\text{Tep}}} f_{\text{pa3}}(t) \cdot dt$$

Далее используя (4.3),(4.12),(4.14),(4.16), находим

$$V_{\text{TO}} = K_{\text{UT}} \cdot \{ \int_{0}^{T_{\text{nep}}} K_{\text{f}} \cdot [U_{\Pi} + U_{M} \cdot \sin(\omega \cdot t - \omega \cdot T_{X})] \cdot dt + \int_{0}^{T_{\text{nep}}} f_{0\text{pa3}}(t) \cdot dt \} =$$

$$= K_{\text{UT}} \cdot (K_{\text{f}} \cdot U_{\Pi} \cdot T_{\text{nep}} + V_{1} + V_{2}) = K_{\text{UT}} \cdot T_{\text{nep}} \cdot (K_{\text{f}} \cdot U_{\Pi} + f_{0\text{cp}}).$$
(5.4)

Обозначим через Δt_T интервал времени [c] (см. рис.4), равный числителю дробной части отношения T/T_{nep} :

$$T/T_{nep} = Kut + \Delta t_T/T_{nep}$$
 (откуда $\Delta t_T = T - Kut \cdot T_{nep}$).
(5.5)

Соответственно преобразуем добавочную составляющую V_{TD} (5.3).

$$V_{TD} = \int_{t_H + Kut \cdot T_{nep} + \Delta t_T} \int f_{pa3}(t) \cdot dt .$$

(5.6)

На рис. 5,*б* в виде заштрихованных площадей показана добавочная составляющая V_{TD} (при Кцт=0) для двух начальных моментов времени $t_{H}(t_{H1} \ u \ t_{H2})$. Откуда видно, что V_{TD} является случайной величиной, поскольку значение t_{H} (от запуска к запуску) – случайное. При росте t_{H} составляющая V_{TD} становится положительной, затем – отрицательной, то есть периодически изменяется. При этом амплитуда колебаний V_{TD} определяется величиной Δt_{T} . Поскольку только V_{TD} зависит от времени t_{H} , то, для независимости интеграла V_{T} (и соответственно f_{T}) от t_{H} , необходимо обеспечить $V_{TD} = 0$. Это достигается [8] установлением желательного времени цикла $T_{\#} = K_{UT} \cdot T_{nep}$. Тогда из (5.5) при $T = T_{\#}$, $\Delta t_{T} = 0$, и из (5.6) $V_{TD} = 0$.

При имеющемся фиксированном значении Δt_T ($0 \le \Delta t_T < T_{nep}$) найдем функциональную зависимость $V_{TD}(t_H)$. Представим выражение нулевой составляющей разностной частоты (4.13) (см. рис. 5,*в*) в виде разложения в ряд Фурье с использованием (4.7),(4.16).

$$f_{0pa3}(t) = f_{0cp} + \sum_{n=1}^{\infty} A_n \cdot \cos[n \cdot \omega \cdot (t - T^+/2)],$$

(5.7)

где A_n – коэффициенты разложения в ряд Фурье.

Зависимость V_{TD} (t_н) получим из (5.6), используя (4.3),(4.12),(5.7).

$$V_{TD}(t_{H}) = \int_{t_{H}+K_{UT}\cdot T_{\Pi ep}+\Delta t_{T}} \{K_{f}\cdot U_{\Pi} + K_{f}\cdot U_{M}\cdot \sin(\omega\cdot t - \omega\cdot T_{x}) + f_{0cp} + \sum_{n=1}^{\infty} A_{n}\cdot \cos[n\cdot\omega\cdot(t - T_{H}+K_{UT}\cdot T_{\Pi ep})] \} \cdot dt = \Delta t_{T}\cdot (K_{f}\cdot U_{\Pi} + f_{0cp}) + \frac{2\cdot K_{f}\cdot U_{M}}{\omega}\cdot \sin(\frac{\Delta t_{T}\cdot\omega}{2})\cdot \sin[\omega\cdot t_{H} + \omega\cdot(\frac{\Delta t_{T}}{2} - T_{x})] + \sum_{n=1}^{\infty} 2\cdot \frac{A_{n}}{n}\omega\cdot \sin(\frac{\Delta t_{T}\cdot n\cdot\omega}{2})\cdot \cos[n\cdot\omega\cdot(t_{H} + \frac{\Delta t_{T}}{2} - T^{+})].$$
(5.8)

Функция $V_{TD}(t_{H})$ – периодическая, с периодом T_{nep} . Поскольку t_{H} является случайной величиной, с законом равномерного распределения, и полный набор значений V_{TD} (с вероятностью =1) укладывается в один период (T_{nep}) изменения аргумента, то плотность вероятностей составляет 1/ T_{nep} . Тогда [9] математическое ожидание (MO) добавочной составляющей (V_{TD}) (случайной величины), являющейся функцией от случайной величины t_{H} , равно

$$m_{\text{VTD}} = \int_{t_{\text{H}}=0}^{t_{\text{H}}=T_{\text{nep}}} \frac{1}{T_{\text{nep}}} \cdot V_{\text{T} \not \text{I}}(t_{\text{H}}) \cdot dt_{\text{H}}.$$

Подставляя (5.8) в приведённое выражение и имея в виду (4.2), а также, что интеграл от синусоидальной функции за интервал кратный периоду этой функции равен нулю, окончательно находим МО добавочной составляющей (V_{TD}).

$$m_{\text{VTD}} = \Delta t_{\text{T}} \cdot (K_{\text{f}} \cdot U_{\pi} + f_{0\text{cp}}) + \frac{2 \cdot U_{\text{M}} \cdot K_{\text{f}}}{\omega \cdot T_{\text{nep}}} \cdot \sin(\frac{\Delta t_{\text{T}} \cdot \omega}{2}) \cdot \int_{t_{\text{H}}=0}^{t_{\text{H}}=T_{\text{nep}}} \sin[\omega \cdot t_{\text{H}} + \omega \cdot (\frac{\Delta t_{\text{T}}}{2} - T_{\text{x}})] \cdot dt_{\text{H}} + \\ + \sum_{n=1}^{\infty} \left\{ \frac{2 \cdot A_{n}}{n \cdot \omega \cdot T_{\text{nep}}} \cdot \sin(\frac{n \cdot \omega \cdot \Delta t_{\text{T}}}{2}) \cdot \int_{t_{\text{H}}=0}^{t_{\text{H}}=T_{\text{nep}}} \cos[n \cdot \omega \cdot (t_{\text{H}} + \frac{\Delta t_{\text{T}}}{2} - T^{+})] \cdot dt_{\text{H}} \right\} = \Delta t_{\text{T}} \cdot (K_{\text{f}} \cdot U_{\pi} + f_{0\text{cp}}).$$
(5.9)

Найдем наибольшее и наименьшее значения составляющей V_{TD} при различных t_{H} . V_{TD} будет иметь верхнее (максимальное) значение (V_{TDB}), когда отрезок времени Δt_{T} (см. рис. 5, δ) расположен симметрично точке $t_{A} = 0,5 \cdot T^{+} + k \cdot T_{nep}$. То есть когда момент окончания счета t_{K} отвечает равенству $t_{K} - 0,5 \cdot \Delta t_{T} = t_{A}$. Откуда с учетом (2.1),(5.5) имеем $t_{H} + KuT \cdot T_{nep} = 0,5 \cdot T^{+} + k \cdot T_{nep} - 0,5 \cdot \Delta t_{T}$.

Подставляем последнее выражение в (5.6).

$$V_{\text{TDB}} = \int_{0,5\cdot T^{+}+k\cdot T_{\text{nep}}=0,5\cdot\Delta t_{\text{T}}}^{0,5\cdot T^{+}+k\cdot T_{\text{nep}}=0,5\cdot\Delta t_{\text{T}}} \int_{0,5\cdot T^{+}+k\cdot T_{\text{nep}}=0,5\cdot\Delta t_{\text{T}}}^{0,5\cdot T^{+}+k\cdot T_{\text{nep}}=0,5\cdot\Delta t_{\text{T}}}$$

(5.10)

Нижнее (минимальное) значение (V_{TDH}) будет, когда отрезок времени Δt_T (см. рис. 5,6) расположен симметрично точке $t_B = T^+ + 0,5 \cdot T^- + k \cdot T_{nep}$. То есть, когда момент окончания счета t_k отвечает равенству $t_k - 0,5 \cdot \Delta t_T = t_B$. Откуда с учетом (2.1),(4.4),(5.5) имеем

$$t_{\rm H} + K_{\rm UT} \cdot T_{\rm nep} = T^+ + 0.5 \cdot T^- + k \cdot T_{\rm nep} - 0.5 \cdot \Delta t_{\rm T} = 0.5 \cdot (T_{\rm nep} + T^+) + k \cdot T_{\rm nep} - 0.5 \cdot \Delta t_{\rm T}.$$

Подставляем последнее выражение в (5.6).

$$V_{\text{TDH}} = \int_{0,5 \cdot (T_{\text{nep}} + T^{+}) + k \cdot T_{\text{nep}} + 0,5 \cdot \Delta t_{\text{T}}}{\int f_{\text{pa3}}(t) \cdot dt} .$$
(5.11)

В дальнейшем расчет, связанный с нахождением экстремальных значений V_{TD}, будем проводить приближенно на основании (4.19), используя рис. 5,*г*.

При расчете V_{TDB} (из рис. 5,*г*) в зависимости от Δt_T необходимо рассмотреть случаи:

1)
$$0 \le \Delta t_T \le T^+$$
; 2) $T^+ \le \Delta t_T \le T_{\text{nep}}$.

(5.12)

Из (5.10) для 1-го и 2-го случаев с учётом (4.2),(4.3),(4.6) соответственно имеем.

$$\begin{split} & V_{TDHI} \approx \int_{0.5^{+}T^{+}k\cdot T_{HeP}^{+}0.5\,\Delta t_{T}}^{-} \left[f_{0}^{+} + K_{f} \cdot U_{u} + K_{f} \cdot U_{u} \cdot \sin(\omega \cdot t - \omega \cdot T_{x}) \right] \cdot dt = \\ & = \Delta t_{T} \cdot \left(f_{0}^{+} + K_{f} \cdot U_{n} \right) + 2 \cdot K_{f} \cdot \frac{U_{u}}{\omega} \cdot \sin\frac{\Delta t_{T} \cdot \omega}{2} \cdot \\ & (5.13) \end{split}$$

$$V_{TDB2} \approx \int_{k^{+}T_{HeP}^{+}T^{+}}^{k^{+}} \left[f_{0}^{+} + K_{f} \cdot U_{u} + K_{f} \cdot U_{u} \cdot \sin(\omega \cdot t - \omega \cdot T_{x}) \right] \cdot dt + \\ & + 2 \cdot \int_{k^{+}T_{HeP}^{+}T^{+}}^{t^{+}} \left[-f_{0}^{-} + K_{f} \cdot U_{u} + K_{f} \cdot U_{u} \cdot \sin(\omega \cdot t - \omega \cdot T_{x}) \right] \cdot dt = \\ & = \Delta t_{T} \cdot \left(-f_{0}^{-} + K_{f} \cdot U_{n} \right) + T^{+} \cdot \left(f_{0}^{+} + f_{0}^{-} \right) + 2 \cdot K_{f} \cdot \frac{U_{M}}{\omega} \cdot \sin\frac{\Delta t_{T} \cdot \omega}{2} \cdot \\ & (5.14) \\ & \Lambda \text{HAIJOTIVIHO NPU PACUETE } V_{TDH} \text{ M3 } (5.11) \text{ Heo}\delta\text{XOZIMO HAÏTU } V_{TDH1} \text{ M } V_{TDH2} \cdot \\ & 1) \quad 0 \leq \Delta t_{T} \leq T^{-}; \quad 2) \quad T^{-} \leq \Delta t_{T} \leq T_{nep} \cdot \\ & (5.15) \\ & V_{TDH1} \approx \int_{0.5^{+}(T_{nep}^{+}T^{+}) + k^{+}T_{nep}^{+}+0.5 \cdot \Delta t_{T}} \left[-f_{0}^{-} + K_{f} \cdot U_{n} + K_{f} \cdot U_{n} + K_{f} \cdot U_{M} \cdot \sin(\omega \cdot t - \omega \cdot T_{x}) \right] \cdot dt = \\ & = \Delta t_{T} \cdot \left(-f_{0}^{-} + K_{f} \cdot U_{n} \right) - 2 \cdot K_{f} \cdot \frac{U_{M}}{\omega} \cdot \sin\frac{\Delta t_{T} \cdot \omega}{2} \cdot \\ & (5.16) \\ & V_{TDH2} \approx \int_{k^{+}T_{nep}^{+}T^{+}} \left[-f_{0}^{-} + K_{f} \cdot U_{n} + K_{f} \cdot U_{M} \cdot \sin(\omega \cdot t - \omega \cdot T_{x}) \right] \cdot dt = \\ & = \Delta t_{T} \cdot \left(-f_{0}^{+} + K_{f} \cdot U_{n} \right) - 2 \cdot K_{f} \cdot \frac{U_{M}}{\omega} \cdot \sin\frac{\Delta t_{T} \cdot \omega}{2} \cdot \\ & (5.16) \\ & V_{TDH2} \approx \int_{k^{+}T_{nep}^{+}T^{+}} \left[f_{0}^{+} + K_{f} \cdot U_{n} + K_{f} \cdot U_{M} \cdot \sin(\omega \cdot t - \omega \cdot T_{x}) \right] \cdot dt + \\ & + 2 \cdot \int_{0.5^{+}(T_{nep}^{+} + T^{+}) + k^{+}T_{nep}^{-} - 0.5 \cdot \Delta T \\ & = \Delta t_{T} \cdot \left(t_{0}^{+} + K_{f} \cdot U_{u} \right) - T^{-} \cdot \left(t_{0}^{+} + K_{f} \cdot U_{u} \cdot \sin\frac{\Delta t_{T} \cdot \omega}{2} \cdot \\ & (5.17) \\ O & Gosina wind cny valine o citration curve do aboundit cocraating output V_{TD} \text{ or } et MO vepees \\ & \Delta V_{TD} : \end{array}$$

 $\Delta V_{TD} = V_{TD} - m_{VTD}.$ (5.18)

Найдем экстремальные значения этого отклонения: верхнее (положительное) ΔV_{TDB} , нижнее (отрицательное) ΔV_{TDH} .

 $\Delta V_{\text{TDB}} = V_{\text{TDB}} - m_{\text{VTD}} ; \ \Delta V_{\text{TDH}} = V_{\text{TDH}} - m_{\text{VTD}}.$

(5.19)

При подстановке в (5.19) используем (5.9) (с учётом (4.4),(4.9)) и выражения (5.13) - (5.18).

$$\begin{split} \Delta V_{\text{TDB1}} &\approx T^{-} \cdot \frac{\Delta t_{\text{T}}}{T_{\text{nep}}} \cdot (f_{0}^{+} + f_{0}^{-}) + 2 \cdot K_{\text{f}} \cdot \frac{U_{\text{M}}}{\omega} \cdot \sin \frac{\Delta t_{\text{T}} \cdot \omega}{2} \,. \\ \Delta V_{\text{TDB2}} &\approx T^{+} \cdot (1 - \frac{\Delta t_{\text{T}}}{T_{\text{nep}}}) \cdot (f_{0}^{+} + f_{0}^{-}) + 2 \cdot K_{\text{f}} \cdot \frac{U_{\text{M}}}{\omega} \cdot \sin \frac{\Delta t_{\text{T}} \cdot \omega}{2} \,. \\ \Delta V_{\text{TDH1}} &\approx -T^{+} \cdot \frac{\Delta t_{\text{T}}}{T_{\text{nep}}} \cdot (f_{0}^{+} + f_{0}^{-}) - 2 \cdot K_{\text{f}} \cdot \frac{U_{\text{M}}}{\omega} \cdot \sin \frac{\Delta t_{\text{T}} \cdot \omega}{2} \,. \\ \Delta V_{\text{TDH2}} &\approx -T^{-} \cdot (1 - \frac{\Delta t_{\text{T}}}{T_{\text{nep}}}) \cdot (f_{0}^{+} + f_{0}^{-}) - 2 \cdot K_{\text{f}} \cdot \frac{U_{\text{M}}}{\omega} \cdot \sin \frac{\Delta t_{\text{T}} \cdot \omega}{2} \,. \end{split}$$

(5.20)

Случайное значение интеграла V_T из (5.1) можно представить в виде

$$V_{\rm T} = m_{\rm VT} + \Delta V_{\rm T},$$

где: m_{VT} – MO интеграла V_T (случайной величины), ΔV_T – отклонение интеграла V_T от его MO. Поскольку из (5.1) V_{TO} – неслучайная величина, то с учётом (5.4),(5.5),(5.9) $m_{VT} = V_{TO} + m_{VTD} = T \cdot (K_f \cdot U_{\Pi} + f_{0cp});$

(5.21)

 $\Delta V_{\rm T} = \Delta V_{\rm TD}$.

Значение интеграла V_T находится между его верхним (максимальным) значением (V_{TB}) и нижним (минимальным) (V_{TH}). Так что

 $V_{TB} = m_{VT} + \Delta V_{TDB}; \quad V_{TH} = m_{VT} + \Delta V_{TDH} \, . \label{eq:VTB}$

Случайное значение средней разностной частоты f_T , определенной за цикл T (из (2.5)):

 $f_T = m_{fT} + \Delta f_T$,

^(5.22)

где: m_{fT} – МО средней разностной частоты (случайной величины), определенной за время цикла T; Δf_T - случайное отклонение средней разностной частоты f_T от её MO.

Случайное значение средней разностной частоты f_T находится в интервале между её верхним (максимальным) значением (f_{TB}) и нижним (минимальным) значением (f_{TH}). Запишем эти экстремальные значения с учетом (2.4),(2.5),(5.22).

$$f_{TB} = m_{fT} + \Delta f_{TB} = \frac{1}{T} \cdot (m_{VT} + \Delta V_{TDB} + 1); \quad f_{TH} = m_{fT} + \Delta f_{TH} = \frac{1}{T} \cdot (m_{VT} + \Delta V_{TDH} - 1),$$
(5.23)

где Δf_{TB} , Δf_{TH} – экстремальные значения (верхнее и нижнее, соответственно) отклонения Δf_{T} .

$$\begin{split} & \text{W}_{3} (5.21) - (5.23): \\ & \text{m}_{\text{fT}} = \frac{\text{m}_{\text{VT}}}{\text{T}} = \text{K}_{\text{f}} \cdot \text{U}_{\pi} + \text{f}_{0\text{cp}}; \\ & (5.24) \\ & \Delta f_{\text{TB}} = \frac{\Delta \text{V}_{\text{TDB}} + 1}{\text{T}}; \quad \Delta f_{\text{TH}} = \frac{\Delta \text{V}_{\text{TDH}} - 1}{\text{T}}. \end{split}$$

Перейдем к рассмотрению особенностей выходной "технологической" информации ПДНЧ.

Выражение интеграла V_S (2.6) (аналогично (5.1),(5.4),(5.6)) определится следующим образом.

$$V_{S} = \int_{t_{H}}^{t_{H} + K_{IIS} \cdot T_{\Pi ep}} \int_{t_{H}}^{t_{H} + K_{IIS} \cdot T_{\Pi ep} + \Delta t_{S}} \int_{t_{H}} f_{pa3}(t) \cdot dt + \int_{t_{H} + K_{IIS} \cdot T_{\Pi ep}}^{t_{H} + K_{IIS} \cdot T_{\Pi ep} + \Delta t_{S}} \int_{t_{H}} f_{pa3}(t) \cdot dt = V_{SO} + V_{SD} ,$$
(5.26)

где: V_{SO} , V_{SD} – основная и добавочная составляющие интеграла V_S , равные соответственно первому и второму интегралам данного выражения;

Кц
ѕ – целая часть (ЦЧ) отношения S/T_{nep} ,

 Δt_S – интервал времени [c], соответствующий дробной части отношения S/T $_{nep}\,$:

 $S/T_{nep} = Kus + \Delta t_S/T_{nep}$ (откуда $\Delta t_S = S - Kus \cdot T_{nep}$). (5.28)

Аналогично (5.22), случайное значение интеграла V_S (5.26) находится между экстремальными значениями (V_{SB} и V_{SH}).

 $V_{SB} = m_{VS} + \Delta V_{SDB}; \quad V_{SH} = m_{VS} + \Delta V_{SDH},$ (5.29)

где m_{VS} – МО интеграла V_S (случайной величины); аналогично (5.21)

$$\mathbf{m}_{\mathrm{VS}} = \mathbf{S} \cdot (\mathbf{K}_{\mathrm{f}} \cdot \mathbf{U}_{\mathrm{f}} + \mathbf{f}_{\mathrm{0cp}}) \,.$$

(5.30)

Если ΔV_{SD} – случайное отклонение добавочной составляющей V_{SD} от её MO, то ΔV_{SDB} , ΔV_{SDH} – экстремальные значения (верхнее и нижнее, соответственно) этого отклонения, подсчитанные по (5.20) (при замене Δt_T на Δt_S) с использованием (4.5).

Случайное значение средней разностной частоты f_S, определенной за интервал S (из (2.7)):

$$\mathbf{f}_{\mathbf{S}} = \mathbf{m}_{\mathbf{f}\mathbf{S}} + \Delta \mathbf{f}_{\mathbf{S}} \,,$$

где: m_{fS} – МО средней разностной частоты (случайной величины), определенной за интервал S;

 Δf_S – случайное отклонение средней разностной частоты f_S от её MO.

Случайное значение средней разностной частоты f_{S} (2.7), находится в интервале между ее экстремальными значениями (f_{SB} и f_{SH}) (аналогично (5.23) с использованием (2.6),(5.29),(5.30)):

$$f_{SB} = m_{fS} + \Delta f_{SB} = \frac{1}{S} \cdot (m_{VS} + \Delta V_{SDB} + 1); \quad f_{SH} = m_{fS} + \Delta f_{SH} = \frac{1}{S} \cdot (m_{VS} + \Delta V_{SDH} - 1),$$
(5.31)

где Δf_{SB} , Δf_{SH} – экстремальные значения (верхнее и нижнее, соответственно) отклонения

$$\Delta f_{S}.$$

$$H_{3} (5.30), (5.31)$$

$$m_{fS} = \frac{m_{VS}}{S} = K_{f} \cdot U_{\pi} + f_{0cp}.$$
(5.32)

$$\Delta f_{SB} = \frac{\Delta V_{SDB} + 1}{S}; \quad \Delta f_{SH} = \frac{\Delta V_{SDH} - 1}{S}$$
(5.33)

Видно, что МО средней разностной частоты [Гц] (5.24),(5.32) не зависит от времени осреднения (Т или S) и в дальнейшем обозначается m_f.

 $m_f = m_{fT} = m_{fS} = K_f \cdot U_{\pi} + f_{0cp}.$

Однако (как следует из (5.25),(5.33)) модули значений отклонения – намного меньше, чем значений Δf_T , поскольку время осреднения S намного больше T, а максимально возможные модули значений отклонений ΔV_{TD} и ΔV_{SD} – одинаковы. Поэтому в практике измерений можно выбрать такое достаточно большое S, что значениями (5.33) отклонения Δf_S , по сравнению с MO (m_f), можно пренебречь и из (5.31) считать:

 $f_S \approx m_f$.

(5.35)

При этом относительная ошибка (по модулю) использования измеренного значения f_S (вместо m_f) подсчитывается как

 $\delta f = |\Delta f_S / m_f| \cdot 100\%$.

(5.36)

Пример. Подсчет импульсов с выхода ПДНЧ осуществляется с параметрами $T = T_{nep} = 0,004c$, S=60c. Сравнить наибольшие (по модулю) значения отклонений Δf_T из (5.25) и Δf_S из (5.33). Оценить минимальное (по модулю) значение МО ($|m_f|$ мин) средней выходной частоты ПДНЧ, при котором наибольшая относительная ошибка по (5.36) (δ fhб) не превышает допускаемую (δ fдп), равную 5%.

Решение. Из (5.2),(5.5) Кцт=ЦЧ(0,004/0,004)=1; $\Delta t_T = 0,004 - 1.0,004 = 0$ с. Из

Кцs= ЦЧ(60/0,004)=15000; Δt_S =60-15000·0,004=0 с. Экстремальные значения отклонений средней частоты от ее МО (из (6.21)-(6.24), (6.29),(6.37) для $\Delta t_T = \Delta t_S = 0$)

 $\Delta f_{TB} = 1/0,004 = 250\Gamma_{II}; \Delta f_{TH} = -1/0,004 = -250\Gamma_{II};$

 $\Delta f_{SB} = 1/60 = 0,017\Gamma \mu;$ $\Delta f_{SH} = -1/60 = -0,017\Gamma \mu.$

Наибольшие (по модулю) значения отклонений

 $\Delta f_{T} \text{ HG}= \Delta f_{TB} = |\Delta f_{TH}| = 250 \text{ Gm}; \quad \Delta f_{S} \text{ HG} = \Delta f_{SB} = |\Delta f_{SH}| = 0,017 \text{ Gm}.$

Отношение наибольших значений отклонений составляет $\Delta f \text{тнб}/\Delta f \text{sh6} = \text{S/T} = \text{Kus/Kut} = 15000.$ Приближенное равенство (5.35) можно считать верным, если $\delta f \text{нб} < \delta f \text{дп}$, или $\Delta f_{\text{S}} \text{ нб} \cdot 100\%/|\text{m}_{\text{f}}|$ мин $< \delta f \text{дп}$, то есть при минимальном (по модулю) значении MO $|\text{m}_{\text{f}}|$ мин $> \Delta f_{\text{S}} \text{ нб} \cdot 100\%/\delta f \text{дп} = 0,017 \cdot 100\%/5\% = 0,34 \Gamma \text{u}.$

6. Зависимость МО средней выходной частоты ПДНЧ от постоянной составляющей его входного напряжения

Определим зависимость $m_f(U_{\Pi})$ для основных диапазонов изменения U_{Π} , указанных на рис. 6, *в* (с учётом практических режимов фоновой помехи: $U_M > U_{rp}^+$, $U_M > U_{rp}^-$).

Для диапазона $-U_{M} + U_{\Gamma p}^{+} \le U_{\Pi} \le U_{M} - U_{\Gamma p}^{-}$ (подставим (4.16) в (5.34))

 $m_{f} = K_{f} \cdot U_{\pi} + f_{0cp}(U_{\pi}) = K_{f} \cdot U_{\pi} + (V_{1} + V_{2}) / T_{nep}.$

 $f_{0cp} = -f_0^-$, подставим в (5.34))

Для $U_{\Pi} < -U_{\Gamma p}^{-} - U_{M}$ (из (4.7) следует: $U_{BX}(t) < -U_{\Gamma p}^{-}$, из (3.5)

$$f_{pa3}(t) = -f_0^- + K_f \cdot U_{BX}(t)$$
, из (4.12) $f_{0pa3}(t) = -f_0^-$, из (4.14) $V_1 + V_2 = -f_0^- \cdot T_{пер}$, из (4.16)

$$m_{f} = K_{f} \cdot U_{\Pi} - f_{0}^{-}.$$

(6.2)
Для $U_{\Pi} > U_{\Gamma p}^{+} + U_{M}$ (аналогично) $m_{f} = K_{f} \cdot U_{\Pi} + f_{0}^{+}$
(6.3)

Запишем также выражения зависимости $m_f(U_n)$ при малых значениях u_{rp}^+, u_{rp}^- для приближенно расширенных диапазонов (см. рис. 6,*г*). График такой функции приведён на рис.7.

Для приближенно расширенного диапазона $|U_{\Pi}| < U_{M}$ зависимость $m_{f}(U_{\Pi})$ определяется точно по (6.1) и приближенно ($m_{f_{\Pi D}}(U_{\Pi})$), подстановкой (4.20) в (6.1):

$$m_{f} = K_{f} \cdot U_{\pi} + f_{0cp}(U_{\pi}) \approx m_{f_{\pi p}} = K_{f} \cdot U_{\pi} + f_{0cp_{\pi p}}(U_{\pi}) = K_{f} \cdot U_{\pi} + \frac{f_{0}^{+} + f_{0}^{-}}{\pi} \cdot \arccos(-\frac{U_{\pi}}{U_{M}}) - f_{0}^{-}.$$
(6.4)

Начальное значение ($f_{0\pi}$) функции $m_f(U_{\pi})$ (6.4), отмеченное на рис. 7, равно $f_{0\pi} = m_f(U_{\pi} = 0) = f_{0cp}(U_{\pi} = 0) \approx f_{0\pi_{\Pi}p} = f_{0cp_{\Pi}p}(U_{\pi} = 0) = 0,5 \cdot (f_0^+ - f_0^-),$ (6.5)

где $f_{0\pi_{\text{пр}}}$ - приближенное начальное значение функции $m_f(U_{\pi})$.

Для приближенно расширенных диапазонов $U_{\Pi} < -U_{M}$ и $U_{\Pi} > U_{M}$ из (6.2),(6.3) (соответственно) имеем

$$m_{f} = K_{f} \cdot U_{\pi} - f_{0}^{-}; \quad m_{f} = K_{f} \cdot U_{\pi} + f_{0}^{+}$$

(6.6)

Линеаризуем функцию $m_f(U_n)$ в районе $U_n \approx 0$. Коэффициент K_{fn} [Гц/мВ] преобразования линеаризованной функции находим дифференцированием (6.4):

$$K_{f\pi} = \frac{dm_{f}(U_{\pi})}{dU_{\pi}}(U_{\pi} = 0) \approx \frac{dm_{f\pi p}(U_{\pi})}{dU_{\pi}(U_{\pi} = 0)} = K_{f\pi\pi p}$$

где К_{fлпp} – приближенное значение коэффициента преобразования К_{fл} с учётом (4.18).

$$K_{f\pi_{\Pi p}} = K_f + \frac{f_0^+ + f_0^-}{\pi \cdot U_M}.$$

-	`
1	۱
'	,

Зависимость $m_{f\pi}(U_{\pi})$, являющаяся результатом линеаризации функции $m_{f}(U_{\pi})$ вблизи нулевых значений U_{π} и проходящая через точку (U_{π} =0, $f_{0\pi}$), имеет вид $m_{f\pi}(U_{\pi}) = K_{f\pi} \cdot U_{\pi} + f_{0\pi} \approx m_{f\pi\pi p}(U_{\pi}) = K_{f\pi\pi p} \cdot U_{\pi} + f_{0\pi\pi p}$,

где $m_{f_{\Pi} n}(U_n)$ – приближённое выражение зависимости $m_{f_{\Pi}}(U_n)$.

График $m_{f_{\Pi}}(U_{\Pi})$ представлен на рис. 7 тонкой линией. Для малых значений U_{Π} $m_{f}(U_{\Pi}) \approx m_{f_{\Pi}}(U_{\Pi}) \approx m_{f_{\Pi}\Pi p}(U_{\Pi}).$

(6.9)

Таким образом, при наличии в сигнале $U_{Bx}(t)$ переменной (синусоидальной) составляющей $u_{nep}(t)$ и малой постоянной составляющей U_n , зависимость МО средней разностной частоты от U_n можно приближенно представить линейной функцией. (Хотя график зависимости разностной частоты от U_n при отсутствии $u_{nep}(t)$ имеет зигзагообразный вид

(6.

(показанный на рис. 3,*в*)). При этом, чем больше амплитуда U_{M} , тем больше $|U_{\Pi}|$, при котором возможна достаточно точная линеаризация функции $m_{f}(U_{\Pi})$. Компьютерное моделирование ПДНЧ с параметрами [3] ($K_{f} = = 10 \ \Gamma \mu/\text{MB}, \ K_{0f} \approx 30 \ \Gamma \mu/\text{MB}, \ U_{rp}^{+} + U_{rp}^{-} \approx 0,6 \ \text{MB}$) показало: при значениях $U_{M} > 25 (U_{rp}^{+} + U_{rp}^{-}) \ для |U_{\Pi}| < 0,75 \ U_{M}$, ошибка

 $|(m_f(U_{\Pi}) - m_{f\pi_{\Pi}p}(U_{\Pi}))/m_f(U_{\Pi} = 0, 2U_M)|$ не превышает 0,012. Грубая линеаризация ($K_{f\pi} = K_f$) обеспечивает такую же ошибку, но лишь в диапазоне $|U_{\Pi}| < 0, 1 U_M$.

9. Выводы

- Математическая модель преобразователя двухполярного напряжения в частоту (ПДНЧ), может быть построена на двух преобразователях однополярного напряжения в частоту (ПОНЧ). Она выражает зависимость выходной частоты от входного напряжения с графиком в виде ломаной линии (с коэффициентом преобразования K_f и разрывом при нулевом напряжении). В эту модель введена наклонная, проходящая через начало координат (с коэффициентом преобразования K_{0f}) и позволяющая аппроксимировать опытные характеристики.
- Рассмотрены информационные параметры ПДНЧ при наличии полезной (постоянной U_п) и неинформативной фоновой (синусоидальной с амплитудой U_м и периодом T_{пер}) составляющих входного напряжения u_{вх}(t). Получены выражения математического ожидания (MO) (m_f) средней выходной частоты ПДНЧ и экстремальных отклонений (верхнего Δf_B и нижнего Δf_H) случайного значения этой частоты относительно MO. Отклонения |Δf_B|, |Δf_H| минимальны, если период (T) счёта PC кратен T_{пер}. Показаны примеры оценок значений m_f.
- Для малых значений U_п и |U_п| ≤ U_м (для нулевой зоны ПДНЧ) проведена линеаризация выражения m_f(U_п) и получена линейная функция m_f(U_п) ≈ K_{fn} · U_п + f_{0n}.

Рис.4

Рис. 5

Рис. 6

Библиографический список

- 1. Гутников В.С.. Интегральная электроника в измерительных устройствах.- 2-е изд.- Л.: Энергоатомиздат, 1988.
- 2. Воросколевский В.И., Пинигин Н.Я.. Преобразователи напряжения в частоту и их применение в технике измерений и управления.- М.: Энергоатомиздат, 1994.

- Микросхемы интегральные К1468БК2У-02 Технические условия АДБК431260.904-02ТУ, 2003.
- 4. Пельпор Д.С. и др. Гироскопические приборы и системы. М.: Высш. шк., 1988.
- 5. Пельпор Д.С. и др. Динамически настраиваемые гироскопы: Теория и конструкция. М.: Машиностроение, 1988.
- Алексенко А.Г., Коломбет Е.А., Стародуб Г.И.. Применение прецизионных аналоговых ИС. М.: Радио и связь, 1981.
- Косинский А.В..Цифровые преобразователи электрических и неэлектрических величин. М.: МИЭМ, 1989.
- Куликовский К.Р., Купер В.Я.. Методы и средства измерений. М.: Энергоатомиздат, 1986.
- 9. Вентцель Е.С.. Теория вероятностей. Учеб. для вузов. 5-е изд. стер. М.: Высш. шк., 1998.

Сведения об авторе

Захаров Александр Александрович, ведущий инженер ФГУП ГосНИИП. Федеральное государственное унитарное предприятие «Государственный научноисследовательский институт приборостроения»; 129226, Москва, проспект Мира, 125; телетайп 112654, телеграф «Корунд»; e-mail corund@col.ru