УДК 629.7.048

Регулирование теплового состояния пилота маневренного самолета.

Пичулин В.С., Смирнова Г.А.

Аннотация

Тепловое состояние пилота при маневрировании самолета является существенным фактором, влияющим на целевой результат полетного задания. В статье предлагается математическая модель, позволяющая в зависимости от режима работы пилота, т. е. уровня энерготрат в каждый момент времени, и внешних условий, определять оптимальную температуру воздуха, подаваемого в вентиляционный костюм, обеспечивая комфортное тепловое состояние пилота. Модель может быть использована в индивидуальных системах жизнеобеспечения с автоматическим регулированием теплового состояния пилота.

Ключевые слова:

индивидуальные системы жизнеобеспечения; вентиляция защитного снаряжение; система терморегулирования; вентиляционный костюм; моделирование теплового состояния пилота.

1. Введение.

Обеспечение комфортного теплового состояния летчика в изменяющихся условиях окружающей среды и при постоянно меняющемся уровне физической и эмоциональной нагрузки, является одной из важнейших задач, решение которой позволяет увеличить вероятность успешного выполнения полетного задания.

Пилот в кабине самолета находится в вентиляционном костюме, и его тепловое состояние регулируется изменением температуры подаваемого в костюм воздуха. На сегодняшний день существуют системы вентиляции защитного снаряжения, в которых пилот по собственным теплоощущениям, вручную, устанавливает положение кранарегулятора расхода теплоносителя. В результате загруженности пилота работами по выполнению своей основной задачи добиться комфортного состояния, как показывает опыт,

1

не удается. Наблюдается перегрев или переохлаждение организма, что приводит к снижению работоспособности.

В данной ситуации актуальной задачей является разработка автоматической системы регулирования теплового состояния пилота по физиологическим показателям.

Полученная в данной работе математическая модель описывает тепловые процессы в организме человека и в вентиляционном костюме с учетом условий полета. Разработанная модель позволяет оценивать тепловое состояние пилота и в зависимости от общих энерготрат пилота, а также в зависимости от внешних условий подбирать необходимую температуру подаваемого в вентиляционный костюм воздуха, обеспечивая тепловой комфорт пилота в течение всего полета.

2. Тепловые потоки в загерметизированной кабине

Для определения внешних факторов, действующих на летчика в защитном снаряжении, рассмотрим тепловые потоки в загерметизированной кабине.

Рис.1. Тепловые потоки в кабине пилота.

Аэродинамический нагрев

Температура атмосферного воздуха может изменяться в пределах от -60° C до 50° C.

Теплообмен между пограничным слоем воздуха, обтекающего летательный аппарат, и внешней поверхностью стенки кабины определяется, прежде всего, скоростью полета. При одинаковой скорости полета теплообмен уменьшается с увеличением высоты.

На околозвуковых и сверхзвуковых скоростях полета самолет подвергается сильному аэродинамическому нагреву. Нагрев возникает в результате превращения в тепло механической энергии, затрачиваемой на преодолении сил трения между слоями воздуха. вблизи поверхности тела, а также вследствие сжатия воздуха на передней кромке аппарата.

Расчеты показывают, что при числе Маха $M = 2,5 \div 3$ температура воздуха в пограничном слое достигает 200-300 ° *C*.

Температура воздуха на дне пограничного слоя у изолированной стенки подсчитывается по следующей формуле [1]:

$$T_{\Pi C} = T_0 \left(1 + 0.2 \Gamma_B M_{\delta}^2 \right), \tag{1}$$

 T_0 – температура наружного воздуха (до торможения); Γ_B – коэффициент восстановления, учитывающий отвод тепла от нижних слоев пограничного слоя к верхним, который равен примерно 0,85–0,9; M – число Маха полета, индекс δ обозначает местные параметры на внешней границе пограничного слоя.

Удельный тепловой поток от пограничного слоя к остеклению самолета (рис. 1):

$$q_{\kappa u \mu} = \alpha_{\mu a p.} (T_{\Pi C} - T_{cm.1}), \qquad (2)$$

где $T_{cm.1}$ – температура внешней поверхности остекления самолета.

$$Q_{\kappa u \mu} = q_{\kappa u \mu} F_{ocm}, \qquad (3)$$

*F*_{ост.} - площадь остекления самолета.

Коэффициент теплоотдачи $\alpha_{_{нар.}}$ изменяется в широком диапазоне и определяется главным образом скоростью, плотностью и теплоемкостью воздуха.

Удельный тепловой поток, возникающий за счет аэродинамического нагрева, через остекление самолета (рис. 1):

$$q_{ocm.} = \frac{\lambda_{ocm}}{\delta_{ocm}} \left(T_{cm.1} - T_{cm.2} \right),\tag{4}$$

где λ_{ocm} – теплопроводность остекления, δ_{ocm} – толщина стекла, $T_{cm.2}$ – температура внутренней поверхности стекла.

Также в солнечную погоду необходимо учитывать поглощенную стеклом часть солнечного излучения $q_{\text{солн.посл}}$.

Для остекления кабин самолетов в настоящее время применяются органическое и неорганическое стекло. На многих самолетах применяют для лобового стекла силикатный триплекс, а для боковых стекол органическое стекло, так как температура нагрева боковых стекол существенно меньше, чем лобового.

Радиационное тепло

Основным источником лучистой энергии, поступающей извне к поверхности самолета, является Солнце.

На Земле (при ожидании вылета на аэродроме) поток солнечного излучения составляет до 900 *Вт* на каждый квадратный метр горизонтальной проекции фонаря [2].

На высоте 10-12 км солнечная радиация составляет $1,78 \frac{Ka\pi}{cM^2 \cdot MuH}$.

Примерно 41% солнечной энергии приходится на видимую часть спектра, 51% – на инфракрасную и 8% – на ультрафиолетовую.

В [3] представлены зависимости отражательной, поглощательной и пропускательной способностей силикатного и органического стекол от толщины стекла. Кроме того, в [3] приведены кривые, характеризующие прозрачный плексиглас с зеркальным и смешанным (зеркальным и рассеянным) отражениями. Для практических расчетов целесообразно пользоваться характеристиками смешанного отражения.

Также при точном расчете тепловых потоков в кабине необходимо учитывать тепловой поток, поступающий в кабину через боковые стенки.

Тепло, выделяющееся при работе различных агрегатов, расположенных в кабине

Если потребляемая агрегатом мощность равна N_i , то отдаваемая им мощность равна $N_i\eta_i$, где η_i – КПД агрегата. Разность между потребляемой и отдаваемой агрегатом мощностями, в конечном счете, выделится в виде тепла.

Тепло, выделяемое оборудованием:

$$Q_{ofopyd} = \sum_{i} N_i (1 - \eta_i).$$
⁽⁵⁾

Система кондиционирования кабины

В кабине в зоне летчика системой кондиционирования кабины поддерживается температура воздуха 20 или $25^{\circ}C$. Это достигается за счет подачи воздуха из коллекторов, расположенных в районе плеч летчика, ног, из труб обдува фонаря. Выпускается воздух через выпускной клапан, когда разница давлений в кабине и за бортом больше, чем

 $\Delta p = 283$ *мм.рт.ст.* На Земле в кабине атмосферное давление, а на больших высотах поддерживается избыточное давление 283*мм.рт.ст.*

Воздух подается через коллекторы (2 коллектора у плеч, 2 коллектора у ног) с температурой от 10 до 30 °C и расходом $100...600 \frac{\kappa^2}{\mu \alpha c}$ в зависимости от режима полета.

Система кондиционирования кабины снимает конвективные тепловые потоки, возникающие за счет аэродинамического нагрева, солнечного излучения, выделения тепла приборами. И в кабине все время полета поддерживается постоянная температура.

Воздух из труб обдува

Остекление фонаря в случае аэродинамического нагрева охлаждается воздухом, поступающим из труб обдува, $T_{cm.2}$ даже при огромном аэродинамическом нагреве не превышает 100 ° *C*.

В зависимости от режима полета воздух из труб обдува подается с температурами от отрицательных (минимально $-20^{\circ}C$) до $+80^{\circ}C$. Это защищает от аэродинамического нагрева в случае сверхзвуковых полетов и от запотевания стекол при небольших скоростях полета, при взлете, посадке.

3. Математическое моделирование тепловых потоков, воздействующих на защитное снаряжение пилота при различных условиях полета

I. *M* = 2,35; *H* = 12 км; солнце.

Кабина загерметизирована. Штатный режим

Сделаем расчет для самолета, имеющего остекление: козырек – силикатный триплекс, толщина остекления $\delta_{cm.\kappa} = 15 \, \text{мм}$, откидная часть фонаря – органическое стекло, толщина стекла $\delta_{cm.o.y.} = 11 \, \text{мM}$.

Система кондиционирования отводит тепло (конвективную составляющую тепловых потоков), поступающее в кабину в результате аэродинамического нагрева, солнечной энергии, выделения тепла оборудованием.

Система кондиционирования поддерживает температуру в зоне летчика $T_{\kappa 1} = 20^{\circ}C$.

Составим уравнение теплового баланса для внешней поверхности защитного снаряжения, подвергающейся солнечному излучению и лучистому теплообмену с остеклением фонаря, в соответствии со схемой рис. 2:

$$C_{\kappa o c m.} \frac{dT_{\kappa o c m.}}{dt} = Q_{co \pi \mu.} + Q_{\pi} - Q_{\kappa o \mu \mu.} - Q_{\kappa o c m.1};$$
(6)

$$C_{\text{kocm.}} = c_{\text{kocm.}} \rho_{\text{kocm.}} V_{\text{kocm.}}; \tag{7}$$

с_{кост.} – теплоемкость внешней оболочки защитного снаряжения, $\rho_{кост.}$ – плотность внешней оболочки защитного снаряжения, $V_{кост.}$ – объем внешней оболочки защитного снаряжения, рассматриваем случай, когда летчик одет в ВМСК (высотный морской спасательный комплект).

 $T_{\kappa ocm.}$ – температура внешней поверхности защитного снаряжения; $Q_{com.}_{npoul.}$ – солнечное излучение, прошедшее через стекло; Q_{π} – тепловой поток за счет лучистого теплообмена защитного снаряжения со стеклом; $Q_{\kappa one}$ – конвективный тепловой поток между защитным снаряжением и воздухом кабины; $Q_{\kappa ocm.1}$ – тепловой поток, проходящий через защитное снаряжение (для площади защитного снаряжения, нагретой в результате действия солнечного излучения и лучистого теплообмена с остеклением фонаря).

Пренебрежем лучистым теплообменом между боковыми стенками кабины и защитным снаряжением летчика, между поверхностью приборов и защитным снаряжением летчика.

Рис. 2. Схема тепловых потоков, действующих на летчика и защитное снаряжение

Рассчитаем величину теплового потока, поступающего за счет солнечного излучения.

$$Q_{conh.}_{npoul.} = J_0 \cdot Inf \cdot D_c \cdot \varepsilon \cdot F_i.$$
(8)

На высоте 12км поток солнечной энергии составляет: $J_0 = 1,78 \frac{\kappa a \pi}{c M^2 M u H} \approx 1200 \frac{Bm}{M^2}$.

Инфракрасная часть солнечной энергии составляет Inf = 51%.

Пропускную способность D_c определяем по графику [3]. Для силикатного стекла при толщине 15мм: $D_{c1} = 0.5$. Для органического стекла при толщине 11мм: $D_{c2} = 0.68$.

Степень черноты защищенного снаряжения примем $\varepsilon = 0.8$.

Для козырька:

$$Q_1 = J_0 \cdot Inf \cdot D_{c1} \cdot \varepsilon \cdot F_1 = 34Bm, \qquad (9)$$

где *F*₁- площадь защитного снаряжения, подвергающаяся солнечному излучению, прошедшему через остекление козырька.

Для откидной части:

$$Q_2 = J_0 \cdot Inf \cdot D_{c2} \cdot \varepsilon \cdot F_2 = 120Bm, \qquad (10)$$

где *F*₂ - площадь защитного снаряжения, подвергающаяся солнечному излучению, прошедшему через остекление откидной части фонаря.

$$Q_{\text{CO.TH.}}_{npoul.} = Q_1 + Q_2 = 154Bm .$$
(11)

Исходя их опытных данных при рассматриваемом режиме полета температура пограничного слоя $T_{\Pi C} = 156^{\circ}C$. Средняя температура воздуха вблизи остекления козырька $T_{\kappa a \delta, 1} = 0^{\circ}C$.

Используя формулы (2) и (4), приближенно рассчитываем температуры на внутренней поверхности остекления. При расчете используем следующие значения коэффициентов теплоотдачи: между внешней поверхностью козырька и атмосферным воздухом $\alpha_{\text{нар.1}} = 350 \frac{\kappa \kappa a \pi}{m^2 4 a c C}$, между внешней поверхностью откидной части фонаря и атмосферным

воздухом $\alpha_{\text{нар.2}} = 180 \frac{\kappa \kappa \alpha \pi}{M^2 4 \alpha c^\circ C}$.

Находим температуры на внутренней поверхности остекления. Для козырька $T_{cm.2\kappa} \approx 91^{\circ}C$. Для откидной части фонаря: $T_{cm.2o.4} \approx 60^{\circ}C$.

Сделаем приблизительный расчет лучистого теплообмена между остеклением фонаря и защитным снаряжением.

$$Q_{n} = Q_{n.KO3.} + Q_{n.O.4.}, \tag{12}$$

$$Q_{n} = F_{1_{2\phi}} \varepsilon_{np.1} \sigma [(273 + T_{cm.2\kappa})^{4} - (273 + T_{\kappa o cm.})^{4}] + F_{2_{2\phi}} \varepsilon_{np.1} \sigma [(273 + T_{cm.2o.4})^{4} - (273 + T_{\kappa o cm.})^{4}], (13)$$

 $\varepsilon_{np.1}$ – приведенная степень черноты; $F_{1_{2}\phi}$, $F_{2_{3}\phi}$ - эффективные площади излучающих поверхностей; σ - постоянная Стефана-Больцмана.

Степени черноты поверхностей защитного снаряжения и остекления:

$$\varepsilon_{_{3auy,CH}} = 0.8, \quad \varepsilon_{_{cme\kappa.}} = 0.92.$$

$$\varepsilon_{_{np.1}} = \frac{1}{\frac{1}{\frac{1}{\frac{1}{1} + \frac{1}{\frac{1}{1} - 1}}}} \approx 0.75.$$
(14)

$$\frac{1}{\varepsilon_{3au,ch}} + \frac{1}{\varepsilon_{cme\kappa}} - 1$$

Конвективный тепловой поток от поверхности снаряжения, нагретой за счет солнца и лучистого теплообмена с остеклением кабины:

$$Q_{\kappa o \mu \theta_{\star}} = \alpha_1 F \left(T_{\kappa o c m_{\star}} - T_{\kappa 1} \right), \tag{15}$$

F - площадь нагретой поверхности;

 α_1 - коэффициент теплоотдачи с поверхности защитного снаряжения, $\alpha_1 = 10.5 \frac{Bm}{M^2 \circ C}$.

Пренебрежем конвективным тепловым потоком между поверхностью защитного снаряжения, не освещенной солнцем и не подвергающейся лучистому теплообмену с остеклением, и воздухом кабины.

Тепловой поток через защитное снаряжение (для нагретой поверхности):

$$Q_{\kappa o c m.1} = \frac{F}{R} (T_{\kappa o c m.} - T_2),$$
(16)

R – термическое сопротивление защитного снаряжения,

*T*₂- температура внутренней поверхности защитного снаряжения.

Рассмотрим случай, когда пилот одет в ВМСК, который включает в себя герметичную оболочку, силовую оболочку, теплозащитный костюм, высотно-компенсирующий костюм,

воздушные прослойки. Термическое сопротивление пакета: $R_{BMCK} \approx 0.2 \frac{M^2 K}{Bm}$.

Подставляя (11), (13), (15), (16) в (6) и подставляя численные значения констант, получаем:

$$C_{\kappa o c m.} \frac{dT_{\kappa o c m.}}{dt} = -2.1 \cdot 10^{-8} \left(273 + T_{\kappa o c m.}\right)^4 - 7.75T_{\kappa o c m.} + 2.5T_2 + 552.5.$$
(17)

Для поверхности защитного снаряжения, не подвергающейся солнечному излучению и лучистому теплообмену с остеклением фонаря, с площадью $F_{_{HeoCB.}}$ температура поверхности защитного снаряжения $T_{_{KOCM.}} \approx 20^{\circ}C$.

Тепловой поток через защитное снаряжение для данной поверхности:

$$Q_{\kappa o cm.2} = \frac{F_{neocs.}}{R} \left(T_{\kappa o cm.} - T_2 \right).$$
(18)

Суммарный тепловой поток через защитное снаряжение:

$$Q_{\kappa o c m.} = Q_{\kappa o c m.1} + Q_{\kappa o c m.2}.$$
⁽¹⁹⁾

Составим систему уравнений теплового баланса для внешней поверхности защитного снаряжения:

$$\begin{cases} C_{\kappa o c m.} \frac{dT_{\kappa o c m.}}{dt} = -2, 1 \cdot 10^{-8} (273 + T_{\kappa o c m.})^4 - 7, 75T_{\kappa o c m.} + 2, 5T_2 + 552, 5\\ Q_{\kappa o c m.} = 2, 5(T_{\kappa o c m.} - T_2) + 4, 5(20 - T_2) \end{cases}$$
(20)

II. Штатный режим. Система кондиционирования кабины поддерживает в кабине в зоне летчика температуру $T_{\kappa^2} = 25^{\circ}C$. Дозвуковой полет. Полет в пасмурную погоду или

ночью

Рассмотрим тепловые потоки на внешней поверхности защитного снаряжения в соответствии со схемой рис. 2:

$$C_{\kappa o c m.} \frac{dT_{\kappa o c m.}}{dt} = Q_{\kappa o c m.} - Q_{\kappa o H \theta.}, \qquad (21)$$

Q_{кост.} – тепловой поток через защитное снаряжение.

$$Q_{\kappa o cm.} = \frac{F_{\kappa o cm.}}{R} \left(T_2 - T_{\kappa o cm.} \right), \tag{22}$$

 $F_{\kappa o c m.}$ – площадь защитного снаряжения, примем $F_{\kappa o c m.} = 1, 4 M^2$.

$$Q_{\kappa o \mu \sigma} = \alpha_2 F_{\kappa o c m} (T_{\kappa o c m} - T_{\kappa 2}), \qquad (23)$$

 α_2 – коэффициент теплоотдачи, $\alpha_2 = 8 \frac{Bm}{m^2 K}$.

Рассмотрим случай, когда летчик одет в ВМСК.

Подставляя (22) и (23) в (21), а также численные значения величин (для ВМСК) в (21) и (22), получаем:

$$\begin{cases} C_{\kappa ocm.} \frac{dT_{\kappa ocm.}}{dt} = -18, 2T_{\kappa ocm.} + 7T_2 + 280\\ Q_{\kappa ocm.} = 7(T_2 - T_{\kappa ocm.}) \end{cases}$$
(24)

Рассмотрим случай, когда летчик одет в вентиляционный костюм.

Вентиляционный костюм (ВК) включает в себя: тканевые прослойки, воздушные

прослойки, подкладку. Термическое сопротивление пакета: $R_{BK} \approx 0.13 \frac{M^2 K}{Bm}$.

Подставляя (22) и (23) в (21), а также численные значения величин (для вентиляционного костюма) в (21) и (22), получаем:

$$\begin{cases} C_{\kappa o c m.} \frac{dT_{\kappa o c m.}}{dt} = -22T_{\kappa o c m.} + 10,8T_2 + 280\\ Q_{\kappa o c m.} = 10,8(T_2 - T_{\kappa o c m.}) \end{cases}$$
(25)

III. M = 2,35; высота H = 12 км.

Отказ в работе системы кондиционирования

Рис. 3. Схема тепловых потоков в кабине пилота. Случай отказа системы кондиционирования.

Рассмотрим случай полета ночью или в пасмурную погоду ($Q_{cont} = 0$).

Сделаем расчет для самолета, имеющего остекление – силикатный триплекс (и козырек, и откидная часть фонаря).

Рассмотрим случай, когда летчик находится в высотном скафандре. Примем, что температура поверхности защитного снаряжения $T_{\kappa ocm.}$ одинакова по всей его площади.

Тепловой поток за счет лучистого теплообмена защитного снаряжения с остеклением:

$$Q_{\pi} = F_{\rho\phi} \varepsilon_{n\rho1} \sigma \Big[(273 + T_{cm.2})^4 - (273 + T_{\kappa ocm.})^4 \Big],$$
(26)

*F*_{эф} - эффективная площадь излучающих поверхностей.

Рассмотрим внешнюю поверхность защитного снаряжения, узел 4 (рис. 3).

Составим уравнение теплового баланса:

$$C_{\kappa o c m.} \frac{dT_{\kappa o c m.}}{dt} = Q_{\pi} + Q_{\kappa o n \theta.} - Q_{\kappa o c m.}$$
(27)

$$Q_{\kappa o \mu \sigma} = \alpha_3 F_{\kappa o c m.} (T_{\kappa} - T_{\kappa o c m.}), \qquad (28)$$

*Т*_к – температура воздуха в кабине,

 α_3 – коэффициент теплоотдачи с поверхности защитного снаряжения, $\alpha_3 = 6 \frac{Bm}{m^2 K}$.

$$Q_{\kappa o c m.} = \frac{F_{\kappa o c m.}}{R_{c \kappa a \phi.}} (T_{\kappa o c m.} - T_2), \qquad (29)$$

 $R_{c\kappa a\phi}$ – термическое сопротивление пакета высотного скафандра, $R_{c\kappa a\phi} = 0.24 \frac{M^2 K}{Bm}$.

Подставляя (26), (28) и (29) в (27), получаем:

$$C_{\kappa o c m.} \frac{dT_{\kappa o c m.}}{dt} = F \varepsilon_{n p 1} \sigma \left[\left(273 + T_{c m.2} \right)^4 - \left(273 + T_{\kappa o c m.} \right)^4 \right] + \alpha_3 F_{\kappa o c m.} \left(T_{\kappa} - T_{\kappa o c m.} \right) - \frac{F_{\kappa o c m.}}{R_{c \kappa a \phi.}} \left(T_{\kappa o c m.} - T_2 \right).$$
(30)

Уравнение теплового баланса для воздуха в кабине, узел 5 (рис. 3):

$$C_{\text{BO3D.}} \frac{dT_{\kappa}}{dt} = Q_{\text{KOH6.1}} + Q_{\text{NPUO.}} - Q_{\text{KOH6.}}, \qquad (31)$$

$$C_{\scriptscriptstyle BO30.} = \rho_{\scriptscriptstyle B} V_{\scriptscriptstyle B} c_{\scriptscriptstyle BO30.}, \tag{32}$$

 $\rho_{e} -$ плотность воздуха в кабине; $V_{e} -$ объем воздуха в кабине; c_{eogd} – теплоемкость воздуха. $Q_{npub} \approx 700Bm$ – тепловыделения оборудования, $Q_{\kappa one,1}$ – конвективный тепловой поток от внутренней поверхности остекления к воздуху кабины,

$$Q_{\kappa o H \epsilon.1} = F_{o cm} \alpha_{\kappa a \delta.3} (T_{cm.2} - T_{\kappa}), \qquad (33)$$

 $\alpha_{\kappa a \delta.3} \approx 6 \frac{Bm}{M^2 K}$ – коэффициент теплоотдачи от внутренней поверхности остекления к воздуху

кабины.

.....

Уравнение теплового баланса для внутренней поверхности остекления самолета, узел 6, (рис. 3):

$$C_{cme\kappa.} \frac{dT_{cm.2}}{dt} = Q_{ocm.} - Q_{\kappa one.1} - Q_{\pi}, \qquad (34)$$

$$C_{cme\kappa.} = \rho_{cm.} V_{cm.} c_{cm.}, \tag{35}$$

 $ho_{cm.}$ – плотность стекла фонаря; $V_{cm.}$ – объем стекла; $c_{cm.}$ – теплоемкость стекла, $Q_{ocm.}$ – тепловой поток через остекление фонаря,

$$Q_{ocm.} = F_{ocm.} \frac{\lambda_{ocm.}}{\delta_{ocm.}} \left(T_{cm.1} - T_{cm.2} \right).$$
(36)

Для силикатного стекла $\lambda_{ocm.} = 0.53 \frac{Bm}{M^{\circ}C}$.

Используя формулу (2), находим температуру внешней поверхности остекления: $T_{cm.1} \approx 151^{\circ} C$.

Используя (30), (31), (34) и (29), получаем систему уравнений теплового баланса:

$$\begin{cases} C_{\kappa ocm.} \frac{dT_{\kappa ocm.}}{dt} = F_{g\phi} \varepsilon_{np1} \sigma \Big[(273 + T_{cm.2})^4 - (273 + T_{\kappa ocm.})^4 \Big] + \alpha_3 F_{\kappa ocm.} (T_{\kappa} - T_{\kappa ocm.}) - \frac{F_{\kappa ocm.}}{R_{c\kappa a\phi.}} (T_{\kappa ocm.} - T_2) \\ C_{go30.} \frac{dT_{\kappa}}{dt} = F_{ocm} \alpha_{\kappa a \delta, 3} (T_{cm.2} - T_{\kappa}) + Q_{npu \delta.} - \alpha_3 F_{\kappa ocm.} (T_{\kappa} - T_{\kappa ocm.}) \\ C_{cm \kappa.} \frac{dT_{cm.2}}{dt} = F_{ocm.} \frac{\lambda_{ocm.}}{\delta_{ocm.}} (T_{cm.1} - T_{cm.2}) - F_{ocm} \alpha_{\kappa a \delta, 3} (T_{cm.2} - T_{\kappa}) - F_{g\phi} \varepsilon_{np1} \sigma \Big[(273 + T_{cm.2})^4 - (273 + T_{\kappa ocm.})^4 \Big] \Big]$$
(37)
$$Q_{\kappa ocm.} = \frac{F_{\kappa ocm.}}{R_{c\kappa a\phi.}} (T_{\kappa ocm.} - T_2)$$

4. Математическое моделирование теплового состояния пилота в защитном снаряжении

Проанализируем тепловые процессы в вентиляционном костюме для расчетной схемы, показанной на рис. 2.

Схема включает в себя тело человека, состоящее из сердцевины с температурой T_{cr} и кожи с температурой T_{sk} в соответствии с двухузловой моделью, разработанной А. Гаагом и Д. Столвиком [4]. На тело одето белье, имеющее температуру T_1 . Внутренний (гигиенический) слой защитного снаряжения имеет температуру T_2 . В вентиляционный зазор поступает воздух с температурой $T_{B.ex}$. T_B – средняя температура воздуха в вентиляционном зазоре.

Составляем уравнения теплового баланса для сердцевины человека, кожи, а также в узлах 1, 2, 3 (рис. 2, рис. 3).

Дифференциальное уравнение теплового баланса сердцевины тела человека [5]:

$$c_{c}G_{u}\frac{dT_{cr}}{dt} = F_{u}\left[M_{net} - \left(5,28 + 1,163V_{ck}^{\bullet}\right)\left(T_{cr} - T_{sk}\right)\right],$$
(38)

где $c_c = c_u (1 - \xi); c_u = 3492 \frac{Bm \cdot c}{\kappa c \cdot \circ C}$ – теплоемкость тела человека; ξ – отношение массы кожи к массе тела; G_u – масса человека; M_{net} – неттометаболизм тела человека на единицу

площади.

В соответствии с [6] зависимость неттометаболизма от общих энерготрат:

$$M_{net} = \frac{0.699Q_{_{9m}} + 21}{F_{_{4}}},$$
(39)

где F_{q} – площадь поверхности тела человека.

Уравнение теплового баланса кожного покрова [5]:

$$c_{k}G_{u}\frac{dT_{sk}}{dt} = F_{u}\left[\left(5,28+1,163V_{ck}\right)\left(T_{cr}-T_{sk}\right)\right] - Q_{ucn.\kappa} - Q_{A},$$
(40)

где $c_k = c_q \xi$; $Q_{ucn.\kappa}$ – тепловой поток за счет испарения влаги с кожи; Q_A – тепловой поток за счет теплопроводности через бельевой слой.

Кровоток V_{ck} и отношение массы кожи к массе тела *ξ* являются изменяющимися параметрами модели. Контрольные сигналы с кожи и сердцевины равны:

$$\delta T_{sk} = T_{sk} - 34; \tag{41}$$

$$\delta T_{cr} = T_{cr} - 37. \tag{42}$$

Кровоток V_{ck}^{\bullet} между сердцевиной и кожей:

$$V_{ck}^{\bullet} = \frac{6,3 + Di}{1 + St},\tag{43}$$

причем

$$St = \begin{cases} 0.5 \cdot \left| \delta T_{sk} \right|, \delta T_{sk} < 0\\ 0, \delta T_{sk} \ge 0 \end{cases}; \tag{44}$$

$$Di = \begin{cases} 150 \cdot \left| \delta T_{cr} \right|, \delta T_{cr} > 0\\ 0, \delta T_{cr} \le 0 \end{cases}.$$
(45)

Отношение массы кожи к массе тела [5]:

$$\xi = \begin{cases} 0,1+0,125 \frac{(6,3-V_{ck})}{6,3}, V_{ck} \le 6,3\\ 0, V_{ck} > 6,3 \end{cases}$$
(46)

В соответствии с [6]:

 $Q_{ucn.\kappa} = 32,4[0,014Q_{_{9m}} - 0,82 - 0,01T_{_B} + [2,8 \cdot 10^{^{-3}}(1 - e^{^{-A}}) + 5,6 \cdot 10^{^{-6}}(Q_{_{9m}} - 105)]T_{_B}^2], \quad (47)$ где $A = 0,0014T_{_B}(T_{_B} - 12).$

Составляем в соответствии с [6] систему уравнений теплового баланса, включающую уравнения (38), (40), а также уравнения теплового баланса для бельевого слоя (узел 1 расчетной схемы), для гигиенического слоя защитного снаряжения (узел 2), для воздуха в вентиляционном зазоре (узел 3).

$$\begin{aligned} c_{c}G_{u}\frac{dT_{cr}}{dt} &= F_{u}\bigg[M_{net} - \bigg(5,28 + 1,163V_{ck}^{\bullet}\bigg)(T_{cr} - T_{sk})\bigg] \\ c_{k}G_{u}\frac{dT_{sk}}{dt} &= F_{u}\bigg[\bigg(5,28 + 1,163V_{ck}^{\bullet}\bigg)(T_{cr} - T_{sk})\bigg] - Q_{ucn.\kappa} - Q_{A} \\ C_{1}\frac{dT_{1}}{dt} &= \frac{\lambda}{\delta}F_{\delta}(T_{sk} - T_{1}) - \alpha_{1}F_{\delta}(T_{1} - T_{B}) - \varepsilon_{np}\sigma\big((T_{1} + 273)^{4} - (T_{2} + 273)^{4}\big) \\ C_{2}\frac{dT_{2}}{dt} &= \varepsilon_{np}\sigma\big((T_{1} + 273)^{4} - (T_{2} + 273)^{4}\big) - \alpha_{2}F_{c}(T_{2} - T_{B}) + Q_{\kappaocm.} \\ C_{B}\frac{dT_{B}}{dt} &= \alpha_{1}F_{\delta}(T_{1} - T_{B}) + \alpha_{2}F_{c}(T_{2} - T_{B}) - 2c_{p}G_{B}(T_{B} - T_{B.ex}) \end{aligned}$$
(48)

В данной системе уравнений: $C_1 = c_{\delta} \rho_{\delta} F_{\delta}$; $C_2 = c_{\rho} \rho_{\rho} F_{\rho}$; c_{δ} , c_{ρ} – теплоемкости бельевого слоя и гигиенического слоя защитного снаряжения, ρ_{δ} , ρ_{ρ} – вес $1m^2$ бельевой ткани и ткани гигиенического слоя соответственно; F_{δ} , F_{ρ} – площади белья и гигиенического слоя, m^2 ; λ – коэффициент теплопроводности бельевого слоя, δ – толщина бельевого слоя; α_1 , α_2 – коэффициенты теплоотдачи бельевого и гигиенического слоя, ε_{np} – приведенная степень черноты поверхностей бельевого и гигиенического слоя; $C_B = c_p m_B$; c_p - удельная теплоемкость воздуха;

 $m_{B} = \rho_{B}V_{B}$ — масса воздуха, находящегося в вентиляционном зазоре, ρ_{B} — плотность воздуха, V_{B} — объем воздуха, G_{B} — массовый расход воздуха.

Возьмем объемный расход воздуха $V_B^{\bullet} = 250 \frac{\pi}{MUH}$. Тогда $G_B = V_B^{\bullet} \rho_B = 0,004 \frac{\kappa^2}{c}$. Численные значения данных величин приведены в [6].

5. Критерии оценки теплового состояния пилота

Стабильное, равновесное состояние организма, что соответствует очень точному балансу скоростей огромного числа химических реакций во внутренней сфере организма, наблюдается при температуре от 36,5 до 37,5 °C (ректальная, измеренная в прямой кишке человека) [5]. При температуре внутренних органов менее 30...35°C человек погибает от

холода, а при температуре более 41...43°С – от перегревания (теплового удара). Данный вопрос рассмотрен в [7, 8].

Средневзвешенная температура кожи является величиной, вычисляемой по «формуле смешивания» температур, измеренных в различных точках поверхности тела.

*T*_{sk} = 0,0886 *t* головы + 0,34*t* туловища +0,067*t* плеча + 0,067*t* предплечья +

$$+0,045t$$
 кисти $+0,1t$ ягодиц $+0,125t$ голени $+0,0644t$ стоп. (49)

Комфортному состоянию соответствуют температуры кожи 30...34,3°С.

При температуре кожи менее 10...18°C и более 45...48°C возникают болевые ощущения, а при температуре 4...8°C и более 60...70°C наступает необратимое разрушение кожного покрова [2].

Ректальная температура T_{cr} и средневзвешенная температура кожи T_{sk} связаны соотношением (формула Бартона):

$$T_T = 0.3T_{sk} + 0.7T_{cr}, (50)$$

 T_T - средняя температура тела.

Комфортное состояние наблюдается при средней температуре тела 35...37°С.

Степень комфортности теплового состояния летчика определяется по уровню теплонакоплений организма $\frac{dS}{dt}$, который применительно к рассматриваемой модели вычисляется по формуле:

$$\frac{dS}{dt} = c_{sk}G_{q}\frac{dT_{sk}}{dt} + c_{cr}G_{q}\frac{dT_{cr}}{dt}.$$
(51)

Обеспечить величину теплонакоплений равной нулю в изменяющихся условиях окружающей среды не представляется возможным, но в этом и нет необходимости. Опыт показывает, что человек чувствует себя комфортно, если теплонакопления находятся в пределах

$$-130 < \frac{dS}{dt} < 130 \frac{\kappa \mathcal{A} \mathcal{B} \mathcal{C}}{c}.$$
(52)

О степени комфортности теплового состояния можно судить и посредством индекса теплоощущений

$$J = 0,0077 \frac{dS}{dt}.$$
(53)

Для комфортного состояния -1 < J < 1.

4. Результат решения системы уравнений теплового баланса пилота

Для решения системы уравнений теплового баланса (48) совместно с системами уравнений (20), (24), (25), (37) и совместно с уравнениями (51) и (53) была разработана программа в системе Matlab. В качестве входного параметра задавался режим работы пилота, т. е. значения полных энерготрат пилота $Q_{_{3m}}$ в каждый момент времени, а также внешние условия полета. Были исследованы режимы работы при различных внешних условиях.

Для заданных энерготрат и заданных внешних условий, а также для допустимых значений индекса теплоощущений J, температуры кожного покрова T_{sk} , сердцевины тела T_{cr} и средней температуры тела T_T в программе подбирались оптимальные значения температуры воздуха, подаваемого в вентиляционный костюм летчика $T_{B.ex}$ в каждый момент времени. Расчет необходимой температуры подаваемого воздуха производился каждые 10 минут.

Тепловое состояние летчика принимаем комфортным, если температуры сердцевины тела, кожи и средняя температура тела находятся в данных пределах: $36,5 < T_{cr} < 37,5^{\circ}$ С;

 $30 < T_{sk} < 34,3^{\circ}C; 35 < T_{T} < 37^{\circ}C.$

На графиках рис. 4 и рис. 5 представлены результаты расчета для условий полета случая I. Были исследованы разные режимы работы пилота (с различными значениями полных энерготрат пилота).

Для данного случая в программе решались системы уравнений (48) и (20) вместе с уравнениями (51) и (53) и были подобраны оптимальные температуры воздуха, подаваемого в вентиляционный костюм, в каждый момент времени.

Из графиков видно, что при полученных значениях $T_{B.ex}$ значения температур сердцевины и кожи лежат в пределах комфортной зоны в течение всего времени полета.

Как отмечалось ранее, основным критерием теплового комфорта является относительное теплосодержание, обозначенное как J. Если относительное теплосодержание -1 < J < 1, то тепловое состояние комфортно. На графиках видно, что данное условие выполняется.

16

t, c	0600	6001200	12001800	18002400	24003000
Qэт, Вт	130	130	280	280	180
Тв.вх	24	24	18	18	22

Рис. 4. Результаты расчеты теплового состояния пилота для случая I, режим работы пилота 1. *M* = 2,35; *H* = 12 км; солнце. Штатный режим. Защитное снаряжение - ВМСК

Рис. 5. Результаты расчеты теплового состояния пилота для случая I, режим работы пилота 2. *M* = 2,35; *H* = 12 км; солнце. Штатный режим. Защитное снаряжение - ВМСК

На графиках рис. 4, 5, 6, 7 и 8:

a) Тсг- температура сердцевины тела; Tsk- средневзвешенная температура кожи; T1 - температура бельевого слоя; б) J – индекс теплоощущений (относительное теплосодержание).

На графиках рис. 6 и рис. 7 представлены результаты расчета для условий полета случая II. Исследованы случаи, когда летчик одет в ВМСК (рис. 6) и в ВК (рис. 7).

Для полета, при котором защитное снаряжение – ВМСК, в программе решались системы уравнений (48) и (24) вместе с уравнениями (51) и (53). Для полета, при котором защитное снаряжение – ВК, в программе решались системы уравнений (48) и (25) вместе с уравнениями (51) и (53). При подобранных значениях $T_{B.ex}$, как мы видим из графиков, значения температур сердцевины, кожи, а также индекс теплоощущений лежат в пределах комфортной зоны.

t, c	0600	6001200	12001800	18002400	24003000
Qэт, Вт	280	280	130	130	220
Tb.bx	19	19	26	26	22

Рис. 6. Результаты расчеты теплового состояния пилота для случая II, режим работы пилота 3. Дозвуковой полет. Полет в пасмурную погоду или ночью. Штатный режим. Защитное снаряжение - ВМСК

t, c	0600	6001200	12001800	18002400	24003000
Qэт, Вт	130	200	280	280	220
Тв.вх	27	24	20	19	23

Рис. 7. Результаты расчеты теплового состояния пилота для случая II, режим работы пилота 4. Дозвуковой полет. Полет в пасмурную погоду или ночью. Штатный режим. Защитное снаряжение – ВК

t, c	0600	6001200	12001800	18002400	24003000
Qэт, Вт	280	280	130	130	220
Тв.вх	10	10	10	10	10
D 0 D					

Рис. 8. Результаты расчета теплового состояния пилота для случая III, режим работы пилота 3. *M* = 2,35; высота *H* = 12 км. Отказ в работе системы кондиционирования. Защитное снаряжение – высотный скафандр.

На графиках рис. 8 представлены результаты расчета для условий полета случая III (отказ в работе системы кондиционирования).

Для случая III программой в системе Matlab решались системы уравнений (48) и (37) вместе с уравнениями (51) и (53). Из графиков видно, что при подобранных программой значениях температур $T_{B.ex}$ в течение 50 минут температуры сердцевины, кожи, а также индекс теплоощущений лежат в пределах зоны комфорта.

5. Заключение

На основе полученной в данной работе математической модели при автоматической регуляции температуры входящего воздуха, как показывают графики, возможно обеспечение комфортного теплового режима летчика в течение всего полета.

Разработанная математическая модель позволяет оценивать тепловое состояние пилота и, в зависимости от уровня общих энерготрат пилота и условий полета, подбирать необходимую температуру подаваемого в вентиляционный костюм воздуха.

Исследованы режимы полета при различных значениях полных энерготрат пилота, т. е. при разных уровнях его физической и эмоциональной нагрузки, а также режимы с разными внешними условиями: в солнечную и пасмурную погоду, при различных значениях скоростей (сверхзвуковой и дозвуковой полет), при различных высотах полета. Также рассмотрены случаи отказа системы кондиционирования кабины.

Данная модель может быть использована в индивидуальных системах жизнеобеспечения. Это обеспечит поддержание теплового состояния пилота на уровне комфорта, существенно повысит безопасность полета, поможет летчику сосредоточиться на своей основной задаче.

Библиографический список

- Справочник авиационного инженера. Александров В. Г., Мырцымов В. В. и др. Изд-во «Транспорт», 1973. – 400 с.
- Акопов М. Г., Дудник М. Н. Расчет и проектирование авиационных систем индивидуального жизнеобеспечения. – М.: Машиностроение, 1985. – 232 с., ил.
- Быков Л. Т., Егоров М. С., Тарасов П. В. Высотное оборудование самолетов.- М.: Государственное издательство оборонной промышленности, 1958. – 392 с.
- Основы космической биологии и медицины / Под ред. Газенко О. Г., Кальвин М. том II, книга первая. – М.: Наука, 1975.

- Пичулин В. С., Олизаров В. В. Системы терморегулирования индивидуального защитного снаряжения экипажей летательных аппаратов: Учеб. Пособие. – М.: МАИ, 1995. – 60 с.: ил.
- Пичулин В. С., Смирнова Г. А. Математическое моделирование теплового состояния летчика в высотном снаряжении. Вестник МАИ, 2012.
- Чичиндаев А. В., Хромова И. В. Компьютерное моделирование работы системы термостабилизации человека в условиях низких температур: Метод. указ. к лаб. раб. для 4-6 курсов / Новосиб. гос. техн. ун-т; Сост. Чичиндаев А. В., Хромова И. В. – Новосибирск: Изд-во НГТУ, 2008. – 51 с.
- Исследование работы системы термостабилизации человека в условиях низких температур: Метод. указ. к лаб. раб. для 4-6 курсов / Новосиб. гос. техн. ун-т; Сост. Чичиндаев А. В., Хромова И. В. – Новосибирск: Изд-во НГТУ, 2009. – 35 сАлексеев С. М., Уманский С. П. Высотные и космические скафандры. – М.: Машиностроение, 1973. – 280 с.

ПИЧУЛИН Владимир Сергеевич, доцент Московского авиационного института (национального исследовательского университета), к.т.н., тел.: (499) 158-48-89; e-mail: <u>kaf607@mai.ru</u>

МАИ, Волоколамское ш., 4, Москва, А-80, ГСП-3, 125993.

СМИРНОВА Галина Анатольевна, аспирант Московского авиационного института (национального исследовательского университета),тел.:454-65-54;e-mail: galina-ovch@mail.ru Ул. Лавочкина, 44-2-471, Москва, 125502.