УДК 621.45.01:004.942

Сравнительный анализ точности математических моделей массы турбореактивных двухконтурных двигателей

Кузьмичев В.С.*, Филинов Е.П.**, Остапюк Я.А.***

Самарский национальный исследовательский университет имени академика С.П. Королева Московское шоссе, 34, Самара, 443086, Россия *e-mail: <u>kuzm@ssau.ru</u> **e-mail: <u>filinov.evg@gmail.com</u> ***e-mail: <u>oya92@mail.ru</u>

Аннотация

В работе проведен сравнительный анализ точности доступных в открытой печати математических моделей массы авиационных газотурбинных двигателей. В статье представлены используемые для анализа термодинамические и габаритные параметры 77 современных двухконтурных газотурбинных двигателей, существенно отличающихся по параметрам рабочего процесса. Недостающие данные для указанной базы были получены методом идентификации математических моделей. Для каждого из 77 двигателей по всем восьми моделям была определена масса и произведено сопоставление результатов с реальным значением массы двигателя, что позволило сделать следующие основные выводы: только четыре из рассмотренных моделей (Torenbeek, Svoboda, Raymer, Кузьмичев) обеспечивают приемлемую погрешность определения массы. Самой низкой погрешностью обладает модель

массы Кузьмичева, структуре которой используется наибольшее (из В рассмотренных) число факторов двигателя, однако В целом для восьми рассмотренных моделей корреляции между числом используемых параметров и точностью не выявлено.

Ключевые слова: турбореактивный двухконтурный двигатель, математическая модель массы, точность математической модели, концептуальное проектирование.

Введение

Для эффективного проектирования газотурбинного двигателя (ГТД) на всех этапах проектирования необходима прогнозная оценка его массы. В частности, на этапе концептуального проектирования оценка массы совместно с показателями экономичности топливной позволяет более обоснованно выбрать тип, компоновочную схему параметры двигателя. Этап концептуального И двигателя) проектирования (до детальной конструктивной проработки характеризуется существующей неопределенностью объективно исходных проектных данных, что ограничивает перечень используемых моделей оценки массы и обуславливает высокий уровень их погрешности. По мере развития проекта и увеличения объема информации, модели оценки массы двигателя становятся более детализированными и поэтому более точными.

На этапе концептуального проектирования используются, как правило, корреляционно-регрессионные модели, основанные на статистических данных по созданным ГТД.

Актуальность данной работы заключается в необходимости выработки рекомендаций по выбору математической модели массы авиационных газотурбинных двигателей для этапа их концептуального проектирования на основе анализа погрешности рассматриваемых математических моделей. Новым в работе являются исходные данные параметров рабочего процесса ТРДД и полученные результаты расчетов погрешности математических моделей.

Модели массы

Был проведен сравнительный анализ моделей оценки массы турбореактивных двухконтурных двигателей, поскольку этот тип ГТД наиболее распространен. Были рассмотрены модели следующих авторов: Torenbeek E. (Delft University of Technology, Nederland) [1], Raymer D. P. (Conceptual Research Corporation, USA) [2], Jenkinson (Loughborough University, UK) [3], Svoboda C. (The University of Kansas, USA) [4], Clavier J. (Cranfield University, UK and France) [5], Guha A. (Indian Institute of Technology, India) [6], Byerley A. R. (USAF Academy, USA) [7], а также модель профессора В.С. Кузьмичева.

Для следующих моделей известны данные о количестве двигателей, на основании информации о которых они создавались: Svoboda – 70 ТРДД, Guha – 30 ТРДД, Byerley – 7 ТРДД, Кузьмичева – 120 ГТД.

Перечисленные выше модели представлены в виде следующих зависимостей: 1 *Модель Torenbeek* $(M_{_{\text{дв}}} = f(m, \pi_{_{\Sigma}}, G_{_{\theta}}, P_{_{\text{взл}}})) - 2008$ год:

$$M_{\rm gB} = \frac{10 \cdot \pi_{\Sigma}^{0.25} \cdot G_{\rm g}}{1+m} + 12,24 \cdot P_{\rm B3R} \left(1 - \frac{1}{\sqrt{1+0,75m}} \right), \tag{1}$$

где: π_{Σ} – суммарная степень повышения давления,

 $G_{\!\scriptscriptstyle e}$ — массовый расход воздуха,

т – степень двухконтурности,

*Р*_{взл} – тяга на взлетном режиме.

Ограничение — m < 8.

2 Модель Guha $(M_{_{\rm {IB}}} = f(D_{_{\rm {B}}})) - 2012$ год:

$$M_{\rm gB} = 1,203 \cdot \left(110452 \cdot D_{\rm B}^3 - 30690 \cdot D_{\rm B}^2\right)^{0,5833},\tag{2}$$

0 5000

где $D_{\rm B}$ – диаметр вентилятора.

3 Модель Svoboda $(M_{_{\rm дв}} = f(P_{_{\rm B3Л}})) - 2000$ год:

$$M_{\rm gB} = 113,398 + 17,844 \cdot P_{\rm B3.7}.$$
 (3)

Ограничение – *m*>2.

4 Модель Raymer $(M_{_{\text{дв}}} = f(m, P_{_{\text{взл}}})) - 1989$ год:

$$M_{\rm gB} = 14,7 \cdot P_{\rm BJI}^{1,1} \cdot e^{-0.045 \cdot m}.$$
(4)

Ограничение — m < 6.

5 Модель Jenkinson $(M_{_{\rm ДB}} = f(m, P_{_{\rm B3Л}})) - 1999$ год:

$$M_{\rm gb} = (8,7+1,14 \cdot m) P_{\rm B3J}.$$
 (5)

Ограничение -5 < m < 14.

6 Модель Clavier $(M_{_{\mathrm{дв}}} = f(m, \pi_{_{\Sigma}}, G_{_{\theta}})) - 2008$ год:

$$X = 10^{-6} \cdot \pi_{\Sigma}^2 \cdot m \cdot G_{\scriptscriptstyle \theta}, \tag{6}$$

$$M_{\rm db} = -19,821 \cdot X^2 + 720,325 \cdot X + 1524,945 \text{ при } X < 5, \tag{7}$$

$$M_{\rm AB} = -49,219 \cdot X^2 + 864,891 \cdot X + 1543,161 \,\,\mathrm{прu} \,\,5 < X < 7\,, \tag{8}$$

$$M_{\rm _{AB}} = -5,009 \cdot X^2 + 287,787 \cdot X + 3418,538 \text{ при } X > 7.$$
(9)

7 Модель Byerley $(M_{_{\mathrm{дB}}} = f(m, \pi_{_{\Sigma}}, D_{_{\mathrm{B}}})) - 2013$ год:

$$M_{\rm дв} = 37,256 \cdot \pi_{\Sigma} \cdot D_{\rm B}^2 + 122,45$$
 при $m < 2$ со смешением, (10)

$$M_{\rm дв} = 14,059 \cdot \pi_{\Sigma} \cdot D_{\rm B}^2 + 1138,32$$
 при $m > 2$ без смешения. (11)

8 Модель Кузьмичева $(M_{_{\text{дв}}} = f(m, \pi^*_{_{\text{к}\Sigma}}, G_{_{\!\! G}}, T^*_{_{\!\! \Gamma}}, \pi^*_{_{\!\! B}})).$

В общем случае масса ТРДД рассчитывается следующим образом:

$$M_{_{\rm AB}} = \left(M_{_{\rm I}} + M_{_{\rm II}} + M_{_{\rm KCM}} + M_{_{\rm \varphi \kappa}}\right) k_{\rm c} k_{_{\rm pec}} \,. \tag{12}$$

Здесь: $M_{\rm I} = B \left(G_{e \, {\rm I} \, {\rm пр. вен}} \right)^{k_{\rm I}} \left[\left(\frac{\pi_{{}_{\rm R}\Sigma}^*}{\pi_{{}_{\rm B}}^*} \right)^{0,286} - 1 \right]^{k_2} k_{T_{\rm I}^*} - {\rm Macca}$ газогенератора

внутреннего контура двигателя;

$$G_{e \text{ I пр.вен}} = G_{e \text{ I}} \frac{1}{\pi_{B}^{*}} \sqrt{1 + (\pi_{B}^{0,286} - 1) \frac{1}{\eta_{B}}} -$$
расход воздуха на взлетном режиме через

внутренний контур, приведенный по параметрам за вентилятором;

 $M_{\text{II}} = 2,865 \cdot G_{e \Sigma \text{ взл}}^{0,903} m^{0,104} \pi_{\text{в}}^{1,193}$ – масса турбовентилятора и обечайки наружного

контура;

$$M_{_{\rm KCM}} = 2,316 \cdot G_{e \Sigma B3\pi}^{0,753}$$
 – масса камеры смешения у ТРДД со смешение потоков

внутреннего и наружного контуров;

 $M_{\phi\kappa} = 2,9 \cdot G_{s \Sigma B3\pi}$ – масса форсажной камеры для ТРДДФ;

*k*_c – коэффициент, учитывающий совершенствование массы (прогресс конструирования) в зависимости от года сертификации двигателя (рис. 1);

*k*_{pec} – коэффициент, учитывающий изменение массы ГТД в зависимости от величины назначенного ресурса;

 $k_{T_{\Gamma}^*}$ – коэффициент, учитывающий возрастание массы двигателя за счет

усложнения системы охлаждения турбины:

$$k_{T_{\Gamma}^*} = 1 + 2 \cdot 10^{-4} \left(T_{\Gamma \max}^* - 1200 \right).$$

Значения коэффициентов *B*, *k*₁, *k*₂ были определены на основе статистических данных по ГТД и сведены в табл. 1.

Рис. 1. Статистическая зависимость коэффициента совершенствования массы ГТД

от года начала серийного производства

Таблица 1

Тит ГТ П	0,5 < G	в І пр.вен <	5 кг/с	$5 < G_{_{\!$	_{I пр.вен} < 4	50кг/с	$G_{_{\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $		
Типттд	В	k_1	k_2	В	k_1	k_2	В	k_1	k_2
ТРД ТРДД π [*] _{к∑ взл} > 5	20,9	0,8	0,5	15,2	1	0,5	6,96	1,2	0,5
ТРД ТРДД π [*] _{кΣ взл} < 5	16,0	0,8	0	11,6	1	0	5,32	1,2	0

Коэффициенты для расчета массы авиационных ГТД

Анализ точности математических моделей массы ГТД

Анализ моделей состоял из нескольких этапов: 1 – поиск и подготовка исходных данных, 2 – расчет массы и анализ результатов.

1 Поиск и подготовка исходных данных.

Для определения точности представленных выше моделей была создана база данных из 77 двухконтурных турбореактивных двигателей с датой выпуска не ранее 1992 года (табл. 2), с широким диапазоном параметров рабочего процесса (табл. 3). Подбирались двигатели как для гражданской, так и для военной авиации.

Исходные данные двигателей были получены из следующих источников:

- официальные сайты фирм-изготовителей (Rolls-Royce plc [8], General Electric [9], Pratt & Whitney [10], ОДК-Сатурн [11] и др.);
- справочники [12, 13, 14, 15];
- публикации [4, 16];
- интернет ресурсы [17].

Как правило, информация о параметрах современных и перспективных двигателей в публикуемой литературе и интернете представлена не полностью. Приводятся лишь основные технические данные двигателей, такие как тяга, удельный расход топлива, масса и некоторые параметры рабочего процесса ($m, \pi_{\kappa\Sigma}^*, \pi_{\kappa}^*, T_{\Gamma}^*$). Часто не указывается, какому сечению двигателя соответствует температура газа перед турбиной (перед сопловым аппаратом, в горле соплового аппарата или перед рабочим колесом), а иногда нет одного или нескольких основных параметров рабочего процесса двигателя (например, расхода воздуха). В редких случаях известна информация о параметрах на нескольких режимах работы.

Для полноценной оценки массы исследуемых двигателей информации из открытых источников, как правило, недостаточно, поэтому требуется проводить распознавание (доопределение) облика их рабочего процесса. Задача распознавания облика рабочего процесса ГТД сводится к определению наиболее вероятной совокупности значений параметров, характеризующих рабочий процесс, достоверных с точки зрения всей имеющейся информации о двигателе [18].

Задача распознавания облика рабочего процесса была решена с помощью САЕ-системы «АСТРА» [19, 20, 21, 22]. Согласование расчётных и опубликованных данных сводилось к решению задачи минимизации целевой функции невязок между расчётными и опубликованными данными (по тяге, удельному расходу топлива и др.), где оптимизируемыми переменными являлись коэффициенты потерь в проточной части, КПД узлов и параметры по которым нет достоверной информации.

Основные данные двигателей, по которым проводилась оценка точности моделей

Двигатель	Год	$G_{_{6}B3\pi}$,	$P_{\rm B3J}$,	$\pi^*_{_{\mathrm{K}\!\Sigma}}$	T_{Γ}^* ,	т	М _{дв} ,	$D_{\rm B},$	$\pi^*_{_{\mathrm{B}}}$
AE 2007	1001	КГ/С 122 4	КП 22.04	22	K 1470	5	КГ 717	M	15
AE 3007	1991	155,4	52,04 70.4	23	14/0) 0.57	/1/	0,98	1,3
AL-31F	1997	110,2	/9,4	23	1000	0,57	1530	0,905	/
BR /10	1995	195,95	05,80	20	1457	4,2	1032,93	1,22	1,0
BK /15	1997	288,49	97,89	32	1484	4,55	2113,74	1,4/	1,/5
CF34-3A	1996	14/	41,013	21	14//	6,2	131	1,118	1,44
CF6-80E1A2	1993	8/3,6	287,055	32,6	1553	5,3	4865	2,794	1,57
CFE/38	1992	108,9	26,325	23	1643	5,3	551	0,902	1,7
CFM LEAP- 1B	2013	591,4	130,4	50	1800	9	2780	1,76	1,9
CFM56-5B1	1994	427,7	133,446	32	1550	5,5	2381	1,735	1,6
CFM56-5B2	1993	443,6	137,894	32,9	1550	5,5	2381	1,735	1,6
CFM56-5B3/P	2003	433,6	142,342	33,7	1550	5,4	2381	1,735	1,6
CFM56-5B4/2	1994	406,9	120,101	29,1	1550	5,7	2381	1,735	1,6
CFM56-5B6	1996	382,8	104,533	25,8	1550	5,9	2381	1,735	1,6
CFM56-5C2	1991	465,8	138,784	31,5	1633	6,6	2585	1,836	1,58
CFM56-5C4	1996	483	151	38,3	1650	6,4	3990	1,8	1,7
CFM56-5C4	1994	483,1	151,239	33,9	1550	6,4	2585	1,836	1,6
CFM56-7B18	2009	307	86,7	32,8	1700	5,5	2366	1,55	1,8
CFM56-7B20	1997	311,2	91,633	22,7	1600	5,6	2366	1,549	1,6
D-436T1	1996	275,00	75,02	25,2	1550	4,95	1450	1,373	1,6
EJ200	1991	73,90	60,00	26	1800	0,400	990,0	0,737	4,2
F110-GE-400	1992	121,6	75,6	30,3	1643	0,87	1526	0,905	3,2
F404-GE-402	1991	66,2	53,156	26	1650	0,31	1035	0,709	3,9
F414	1996	78	64,9	30	1795	0,37	1110	0,777	3,9
FJ44-1A	1992	28,58	8,45	12,80	1291	3,28	202,76	0,50	1,50
GE Honda HF120	2009	20,00	9,10	24	1700	2,900	180,0	0,54	1,8
GE90-76B	1995	1361	340	39,3	1750	8,4	7893	3,1	1,7
GE90-85B	1995	1377,6	376,763	39,3	1643	8,4	7074	3,124	1,65
Genx-1B70	2008	1234,2	311	43	1800	9,6	5816	2,82	1,87
GP7268	2005	907	302,478	46	1925	8	5216	2,946	1,7
GP7270	2006	1200	311	45,6	1800	8,8	6718	2,9	1,7
GP7270	2005	1179,3	311,374	45,6	1725	8,7	6712	2,946	1,7
GP7277	2005	1179,3	342,511	45,6	1775	8,7	6033	2,946	1,7
GTX-35VS	1996	78,00	52,00	21,5	1700	0,160	1236,0	0,909	3,4
HTF7000	1999	107	30,89	28,2	1480	4,4	687	0,87	1,6
JT15D-5D	<u>199</u> 3	34,02	13,545	13,1	1353	2	284	0,521	1,5

Приготели	Гол	$G_{_{\!$	$P_{\rm B3JI}$,	# *	T_{Γ}^{*} ,	100	$M_{_{\mathrm{JB}}}$,	$D_{\rm B}$,	# *
двигатель	ТОД	кг/с	κН	$\mathcal{H}_{\mathrm{K}\Sigma}$	К	m	КГ	М	$n_{_{\rm B}}$
Larzac 04-R20	1990	28,6	14,123	10,6	1433	1,04	302	0,452	2,5
LEAP-1C	2014	839	138	50,0	2100	11,0	3929	1,9	1,8
LF507	1991	116,1	31,138	13,8	1365	5,6	628	1,272	1,45
M53-P2	1998	94,3	64	9,8	1533	0,35	1500	0,792	3,9
M88-2	1996	65	50	24,5	1850	0,3	897	0,696	3,9
PW2337	1993	548,8	162,8	27,4	1500	5,8	3259	1,994	1,63
PW305B	1990	81,60	23,39	15,5	1350	4,300	450,0	0,779	1,8
PW306B	1999	81,70	26,91	20,58	1460	4,24	522,1	1,138	1,57
PW4052	2012	771,11	233,61	27,5	1650	5	4272,84	2,38	1,7
PW4084	1994	1156,7	373,649	36,3	1634	6,41	6597	2,845	1,68
PW4084	1994	1156,70	373,65	36,3	1634	6,410	6597,0	2,845	1,68
PW4090	1996	1230,10	401,23	38,6	1634	6,300	7069,0	2,845	1,7
PW4168	1997	863	305	31,8	1750	5,1	6400	2,5	1,75
PW4168	1993	877,20	305,15	33,4	1634	5,100	5625,0	2,535	1,75
PW6124	2005	295	105,7	28,2	1570	4,9	2449	1,435	1,7
RB.211-524H	1990	727,6	269,56	34,5	1548	4,3	4386	2,192	1,5
Rb211-524G-T	1998	727,6	257,996	32,9	1550	4,3	4295	2,192	1,7
SaM146-1S18	2010	357	72	28,0	1700	4,4	2259	1,2	1,8
Tay 611-8C	2002	185,97	61,61	15,8	1600	3,04	1538	1,12	1,7
Tay RB. 183-3 Mk.651	1992	193,2	68,503	16,6	1500	3,07	1533	1,52	1,5
TFE731-60	1996	84,82	22,7	22	1450	3,9	450,42	0,762	1,7
Trent 1000	2008	1247,4	235,755	50	1820	10,8	6437	2,845	1,8
Trent 1000-A	2006	1290	265,3	50	1820	10	5936	2,85	1,8
Trent 556	2000	879	249	35,0	1650	7,6	4990	2,5	1,7
Trent 556	1999	879	249	36,3	1581	7,6	4840	2,47	1,6
Trent 768	1994	876,34	300,36	35,2	1560	4,97	4785,4	2,46	1,75
Trent 772-60	1995	897,2	316,267	36,8	1652	4,89	4785	2,474	1,62
Trent 875	1996	1125,82	346,63	34,9	1549	6,21	6047,75	2,79	1,7
Trent 890	1998	1233,77	406,26	42,8	1625	5,75	6047,75	2,79	1,7
Trent 900	2004	1204	340,289	41	1593	7,14	6271	2,794	1,8
Trent 970-84	2004	1125,36	344,3	37	1870	8,7	6246	2,95	1,7
Trent XWB	2010	1436	375	50,0	2273	9,6	7277	3,0	1,8
V2522-A5	1993	334,8	102,49	25,2	1623	4,9	2382	1,681	1,7
V2525-D5	1994	355,6	111,206	27,7	1623	4,8	2382	1,681	1,8
V2528-D5	1993	375	124,59	30	1470	4,7	2449,4	1,613	1,75
V2533-A5	1994	395,5	140,56	33,4	1623	4,5	2331	1,613	1,79
АЛ-55	2005	28,5	17,26	17,5	1445	0,515	315	0,59	2,5
ПД-14М	2016	630	153	46,0	2000	7,2	2970	1,9	1,8
ПС-90	1992	470	156,8	31,9	1640	4,6	2950	1,9	1,6

Двигатель	Год	<i>G_{в взл}</i> , кг/с	<i>Р</i> _{взл} , кН	$\pi^*_{_{\kappa\Sigma}}$	T_{Γ}^*, K	т	М _{дв} , кг	D _в , м	$\pi^*_{_{ m B}}$
ПС-90А	1992	470	156,911	35,5	1609	4,6	2950	1,9	1,6
ПС-90А2	2010	504	157	33,5	1640	4,5	3000	1,9	1,8
РД1700	1995	30	17	14,3	1460	0,78	297,5	0,452	2,5

Таблица 3

Диапазон изменения параметров рабочего процесса в выборке двигателей

Параметр	<i>G</i> _{6 взл} , кг/с	<i>Р</i> _{взл} , кН	$\pi^*_{{}_{\mathrm{K}\!\Sigma}}$	T_{Γ}^{*} , K	т	$M_{_{ m db}},$ кг	<i>D</i> _в , м	$\pi^*_{_{\mathrm{B}}}$	Год выпуска
min	20	8,45	9,8	1291	0,16	180	0,452	1,44	1992
max	1436	406	50	2273	11	7893	3,124	7	2016

Из табл. З видно, что диапазон изменения параметров рабочего процесса найденных 77 двигателей достаточно широк. Полученные результаты анализа моделей массы будут справедливы для большинства современных ТРДД, поскольку их параметры укладываются в этот диапазон.

2 Расчет массы и анализ результатов.

Для каждого из представленных в табл. 2 двигателей по каждой из вышеуказанных моделей был произведен расчет массы. По результатам расчета были построены графики отклонения фактического значения массы от расчетного (рис. 2-9). Кроме того, определялось отклонение полученной расчетной массы от реального значения и вычислялось среднеквадратичное отклонение для каждой модели массы ГТД (рис. 10).

Рис. 2. Отклонение расчетного значения массы от фактического (модель Svoboda)

Рис. 3. Отклонение расчетного значения массы от фактического (модель Raymer)

Рис. 4. Отклонение расчетного значения массы от фактического (модель Jenkinson)

Рис. 5. Отклонение расчетного значения массы от фактического (модель Torenbeek)

Рис. 6. Отклонение расчетного значения массы от фактического (модель Clavier)

Рис. 7. Отклонение расчетного значения массы от фактического (модель Byerley)

Рис. 8. Отклонение расчетного значения массы от фактического (модель Guha)

Рис. 9. Отклонение расчетного значения массы от фактического (модель Кузьмичева)

Рис. 10. Среднеквадратичное отклонение для каждой модели массы

Опыт проектирования показывает, что допустимая погрешность при оценке массы ГТД на этапе концептуального проектирования не должна превышать 10-15% [5].

Анализируя полученные результаты можно сделать выводы, что некоторые модели применимы только для двигателей большой размерности [23]: Guha ($D_{\rm B} > 1.2$ м), Byerley ($D_{\rm B} > 1$ м), Jenkinson ($P_{\rm B3Л} > 100$ кН) и Clavier ($G_{\rm B,B3Л} > 150$ кг/с). Для двигателей меньшей размерности перечисленные модели рассчитывают массу с высокой погрешностью, и чем меньше двигатель, тем выше погрешность расчета (для двигателей большой размерности погрешность перечисленных моделей не превышает 12%). Эта закономерность относится ко всем моделям без исключения, например, модель Кузьмичева хоть и обладает общей погрешностью в 6.3%, но для двигателей массой меньше 1500 кг среднеквадратичное отклонение приближается к 20%.

Отдельно были проанализированы результаты моделей Svoboda и Guha, зависящих только от одного параметра – тяги или диаметра вентилятора. Для этого были отобраны двигатели с близкой размерностью, но разными параметрами цикла ($\pi_{\kappa\Sigma}$, $T^*\Gamma$). Масса этих двигателей изменяется в пределах 25% (хотя средняя погрешность модели Svoboda 12%). Таким образом, модели Svoboda и Guha можно использовать только на этапе формирования технического задания. Этот вывод приводит к необходимости оптимизировать коэффициенты модели Кузьмичева для двигателей с малой тягой ($P_{взл} < 50$ кH).

Заключение

На ранних этапах проектирования выбор параметров определяет облик будущего двигателя, поэтому необходимо чтобы модель массы ГТД не только отражала зависимость массы ГТД от его проектных переменных (параметров, которые оптимизируются, например, суммарная степень повышения давления, степень двухконтурности, температура газа перед турбиной и др.), но и обеспечивала достаточную точность.

Исходя из приведенного выше анализа можно сформировать следующие рекомендации: при концептуальном проектировании ЛА целесообразно использовать модели Torenbeek, Raymer и Кузьмичева. Модели Svoboda и Guha, которые учитывают зависимости массы ГТД только от тяги или габаритов двигателя могут применяться на начальных этапах проектирования, а более детализированные модели, например, Torenbeek и Кузьмичева, которые зависят от параметров рабочего процесса, могут использоваться по мере накопления проектной информации для формирования облика проектируемого двигателя.

У всех моделей было отмечено значительное снижение точности расчета массы для двигателей малой размерности (*P*_{взл} < 50 кH). Это влечет необходимость уточнения коэффициентов существующих моделей, или создание специализированных моделей только для двигателей малой тяги.

Ранее краткое сравнение моделей массы проводилось только в работе Lolis P. [5]. В представленном выше исследовании был выполнен более глубокий анализ существующих моделей и даны рекомендации по их применению.

Библиографический список

 Torenbeek E. Synthesis of Subsonic Airplane Design. Delft, Delft University Press, 1976, 598 p.

2. Raymer D.P. Aircraft Design: A Conceptual Approach, Washington, American Institute of Aeronautics and Astronautics, 1992, 745 p.

3. Jenkinson L.R., Simpkin P., Rhodes D. Civil Jet Aircraft Design, London, American Institute of Aeronautics and Astronautics, 1999, 429 p.

4. Svoboda C. Turbofan Engine Database as a Preliminary Design Tool // Aircraft Design, 2000, no. 3, pp. 17 - 31.

5. Lolis P. Development of a Preliminary Weight Estimation Method for Advanced Turbofan Engines: Ph.D. Thesis. Cranfield University, 2014, 189 p.

 Guha A., Boylan D., Gallagher P. Determination of Optimum Specific Thrust for Civil Aero Gas Turbine Engines: a Multidisciplinary Design Synthesis and Optimization, Proc IMechE Part G // Journal Aerospace Engineering, 2012, vol. 227 (3), pp. 502 - 527. DOI: 10.1177/0954410011435623.

7. Byerley A.R., Rolling A.J., Van Treuren K.W. Estimating Gas Turbine Engine Weight, Costs, and Development Time During the Preliminary Aircraft Engine Design Process // Proceedings of ASME Turbo Expo, 2013, vol. 4, GT2013-95778, pp. V004T08A01, DOI: 10.1115/GT2013-95778.

8. Trent 1000 package C update. URL: <u>http://www.rolls-royce.com/</u>

9. Introducing GE's Catalyst[™] Advanced turboprop engine. URL: <u>https://www.geaviation.com/</u>

10. Products. URL: <u>http://www.pw.utc.com/Products</u>

V Международный технологический форум «Инновации. Технологии.
 Производство». 16-18 апреля 2018. URL: http://www.npo-saturn.ru/?sat=61

 Roux E. Turbofan and Turbojet Engines. Database Handbook, Blagnac, Elodie Roux, 2007, 595 p.

Соркин Л.И., Ведешкин Г.К., Князев А.Н. Иностранные авиационные двигатели и газотурбинные установки: Справочник - М.: ЦИАМ, 2010. Вып. 15. - 415 с.

14. Скибин В.А., Солонин В.И. Работы ведущих авиадвигателестроительных компаний в обеспечение создания перспективных авиационных двигателей: Аналитический обзор. - М.: ЦИАМ, 2010. - 673 с.

15. Шустов И.Г. Двигатели 1944-2000: авиационные, ракетные, морские, промышленные: технико-экономическая база данных. Энциклопедия по двигателям.
- М.: АКС-Конверсалт, Центр истории авиационных двигателей, 2000. - 394 с.

16. Mattingly J.D., Heiser W.H., Pratt D.T. Aircraft Engine Design, Reston, American Institute of Aeronautics and Astronautics, 2002, 679 p.

 17. Civil
 Turbojet/Turbofan
 Specifications.
 URL:
 <u>http://www.jet-</u>

 engine.net/civtfspec.html

 Кузьмичев В.С., Морозов М.А. Концепция метода распознавания облика рабочего процесса ГТД в условиях дефицита информации // Известия Вузов. Авиационная техника. 1991. № 3. С. 44 - 48.

19. Kuz'michev V.S., Ostapyuk Y.A., Tkachenko A.Y., Krupenich I.N., Filinov E.P. Comparative Analysis of the Computer-Aided Systems of Gas Turbine Engine Designing

// International Journal of Mechanical Engineering and Robotics Research, 2017, vol. 6(1), pp. 28 - 35. DOI: 10.18178/ijmerr.6.1.28-35.

20. Rybakov V.N., Tkachenko A.Y., Kuz'michev V.S., Krupenich I.N. Computer-aided system of virtual testing of gas turbine engines // MATEC Web of Conferences, 2016, vol.
77. DOI: 10.1051/matecconf/20167701028.

21. Кузьмичев В.С., Крупенич И.Н., Рыбаков В. Н. и др. Формирование виртуальной модели рабочего процесса газотурбинного двигателя в САЕ системе «АСТРА» // Труды МАИ. 2013. № 67. URL: <u>http://trudymai.ru/published.php?ID=41518</u>

22. Кузьмичев В.С., Крупенич И.Н., Рыбаков В.Н. и др. Исследование возможности повышения эффективности ГТУ за счёт регенерации тепла // Труды МАИ. 2012. № 58. URL: <u>http://trudymai.ru/published.php?ID=33274</u>

23. Kuz'michev V.S., Tkachenko A.Y., Ostapyuk Y.A., Krupenich I.N., Filinov E.P. Features of Computer Modeling of the Working Process of Small-scale Gas Turbine Engines // 2017 International Conference on Mechanical, System and Control Engineering, ICMSC 2017, Saint-Petersburg, May 19-21, 2017, pp. 136 - 140.