УДК 539.9, 539.17 — 539-19, 539.51 — 74, 539.92, 621.039

Вероятности фото-переходов иона Хе П и распределения возбуждённых состояний в низкотемпературной плазме Холловского двигателя

Криворучко Д.Д.^{1*}, Кули-заде М.Е.^{2**}, Скороход Е.П.^{2***}, Скрылев А.В.¹

¹Московский физико-технический институт, Институтский пер., 9, Долгопрудный, Московская область, 141701, Россия

²Московский авиационный институт (национальный исследовательский университет), Волоколамское шоссе, д. 4, Москва, А-80, ГСП-3, 125993, Россия

> *e-mail: <u>daria.krivoruchko@phystech.edu</u> **e-mail: <u>kuli_marina@mail.ru</u> ***e-mail: <u>e.p.skorohod@mail.ru</u>

Аннотация

Исследуется низкотемпературная ксеноновая плазма Холловского двигателя. Эксперименты проводились в горизонтально расположенной цилиндрической вакуумной камере диаметром 1,8 м. и длиной 4,5 м., оптические измерения – в диапазоне от 250 нм до 1100 нм. Измерены абсолютные интенсивности спектральных линий излучения ксеноновой плазмы струи холловского двигателя.

Приведены результаты расчётов вероятностей радиационных переходов для спонтанного излучения иона ксенона. По линиям спектра с использованием рассчитанных вероятностей фото-переходов определены заселённости иона ксенона для четырёх разных случаев положения приемной оптики. Нелинейный "рой-образный" характер распределения заселённостей возбуждённых состояний сохраняется во всех четырёх случаях для всех коэффициентов Эйнштейна.

Ключевые слова: ксеноновая плазма, Холловский двигатель, вероятности фото-переходов Хе II, распределения возбуждённых состояний Хе II, оптическая диагностика.

Введение

Данная работа является продолжением исследований [1] по спектроскопической диагностике неравновесной низкотемпературной плазмы ксенона Холловского двигателя (ХД).

Для плазмы, находящейся в локальном термодинамическом равновесии (ЛТР), наиболее хорошо разработаны спектроскопические методы [2, 3]. Однако, выполненная по Г.Гриму [2] оценка [4] показывает, что плазма ХД не может быть описана ни моделью ЛТР, ни моделью частичного ЛТР, поэтому авторы [4, 5, 22, 23] использовали корональную модель равновесия. В рамках корональной модели предполагается, что атомы или ионы возбуждаются непосредственно из основного состояния электронным ударом, и соблюдается баланс между ударной ионизацией (и возбуждением) и излучательной рекомбинацией (и спонтанным распадом).

Расчёты многоуровневой кинетики атома ксенона [6-8] (кратко в [1]) показали, что при концентрациях электронов ~10¹¹-10¹² см⁻³ распределения возбуждённых состояний (PBC) представляют собой "рой" точек, значения которых лежат в пределах нескольких порядков.

В [5] рассчитывались заселённости ряда уровней иона ксенона согласно корональной модели в предположении, что функция распределения PBC электронов энергиям максвелловская. Расчёты по И экспериментальные данные в работе [5] изображены графически в виде отдельных точек, которые для наглядности соединены отрезками, имеющих разные наклоны. При этом характер наклонов сохраняется как для РВС теоретических, так для экспериментально полученных значений. Авторы [5] делают вывод об удовлетворительном согласии корональной модели, с экспериментальными результатами при использовании рассчитанных ими значений сечений возбуждения электронным ударом, тем самым подтверждая правильность выбора самой корональной модели.

Обратимся к постановке задачи, сформулированной для ксеноновой плазмы с участием иона Хе II по аналогии с работой [1]. Рассчитать вероятности фото-переходов для всех присутствующих в спектре линий иона ксенона с использованием разных моделей. Из экспериментальных значений интенсивностей линий I_{λ} найти концентрации N_i (заселённости), используя выражение для интенсивности спектральной линии

$$I_{\lambda} = \frac{hc}{4\pi n\lambda} N_i A_{ij} \varphi(\lambda), \qquad (1)$$

где A_{ii} – вероятность фото-перехода, $\varphi(\lambda)$ – спектральный контур линии.

Построить экспериментальные заселённости Хе II по спектрам, полученных, как и в [1], для четырех положений регистрирующей аппаратуры. Убедиться, что их характер не меняется. Используя те же коэффициенты Эйнштейна, в рамках многоуровневой кинетики рассчитать заселённости этих же фото-переходов. В результате последующих расчётов многоуровневой кинетики добиться совпадения теоретически полученных PBC с экспериментальными данными и тем самым определить концентрацию электронов и их температуру, плотность ядер и их температуру. Заметим, что предложенный подход предполагает знания многочисленных констант скоростей реакций для составления релаксационной матрицы и не использует "конкретику" [5], когда интенсивность спектральной линии определяется через константу скорости возбуждения электронным ударом $\langle Q_{0m}v_e \rangle$

$$I_{mk} = N_0 n_e \langle Q_{0m} v_e \rangle \left(\frac{A_{mk}}{\gamma_m} \right) \hbar \omega_{mk} \quad , \tag{2}$$

 $(\hbar \omega_{mk}$ – энергия фото-перехода, $\gamma_m = \sum_{j < m} A_{mj}$).

1. Вектор состояния ксеноновой плазмы в модели ЛТР.

Назовём *вектором состояния* рассматриваемой ксеноновой плазмы набор значений концентраций возбуждённых состояний атома и иона, включая их концентрацию в основном состоянии. Данное понятие может использоваться для описания состояния плазмы наравне с классическими макропараметрами.

Рассмотрим простейший расчёт ионизационного состава ксеноновой плазмы с учётом снижения потенциала ионизации в рамках так называемой расщеплённой модели [2, 7]. При температурах $T_e < 1.5$ эВ в плазме можно

учитывать только атомы Xe 1 и ионы Xe II, Xe III, концентрации которых связаны соотношениями [2, 3]

$$\frac{n_e n_1}{n_o} = a = 3.03 \cdot 10^5 \frac{Z^1}{Z^0} (\frac{T_e}{Ry})^{3/2} \exp(\frac{\Delta I^0 - I^0}{T_e});$$
(3)

$$\frac{n_e n_2}{n_1} = b = 3.03 \cdot 10^5 \frac{Z^2}{Z^1} (\frac{T_e}{Ry})^{3/2} \exp(\frac{\Delta I^1 - I^1}{T_e}); \qquad (4)$$

Здесь *n_e*, *n_o*, *n₁*, *n₂* – концентрации, соответственно, электронов, атомов, ионов в единицах 10¹⁸ см⁻³; *I*⁰=12.127 эВ, *I*¹= 21.2 эВ – потенциалы ионизации Хе 1, Хе II. Снижение потенциала ионизации определялось по Дебаю. При вычислении статистической суммы

$$Z^{(m-1)} = \sum_{k} g_{k}^{(m-1)} \exp(-\frac{E_{k}^{(m-1)}}{T_{e}}), \qquad (m=1,2),$$
(5)

для указанных температур можно учитывать лишь самые нижние уровни: $5s^25p^6 {}^{1}S_0 - для$ Xe 1; $5p^{52}P_{3/2,1/2} - для$ Xe II; $5p^{43}P_{2,0,1}$; ${}^{1}D_2$; ${}^{1}S_0 - для$ Xe III. Система уравнений (3) и (4), дополненная условием квазинейтральности плазмы и уравнением сохранения полного числа ядер, будет

$$\begin{cases}
n_e n_1 = a n_o \\
n_e n_2 = b n_1 \\
n_e = n_1 + 2 n_2 \\
n = n_o + n_1 + n_2
\end{cases}$$
(6)

В результате решения (6) определяются концентрации в основных состояниях атома *n*₀ и иона *n*₁.

Для построения вектора состояния эти значения компонентного состава следует дополнить распределением возбужденных состояний Xe I и иона Xe II, которые в этом примере (модель ЛТР) рассчитываются по формуле Больцмана

$$\frac{N_i^{+(m-1)}}{N^{+(m-1)}} = \frac{g_i^{(m-1)}}{Z^{(m-1)}} \exp(-\frac{E_i}{kT_e}).$$
(7)

Графическим представлением такого вектора состояния должна быть прямая в логарифмическом масштабе. Результаты расчёта согласно (6) и (7) отражены на рис.1 (для наглядности энергия возбуждения направлена в отрицательную область по отношению к энергии основного уровня) и рис.2 (энергия направлена в положительную сторону). Продолжением РВС для атома на рис.1 является та же прямая РВС для иона. Единые прямые, как вектор состояния, получены в соответствие с формулой (7), но для иона использовались значение энергий, равных сумме потенциала ионизации + энергия самого возбуждения иона из основного состояния (шкала энергий на рис.1). Такое возможно [2], если величину концентрации электронов N_e соотнести с длиной волны де'Бройля для электрона $\lambda_e = h/p$, выразив импульс p через температуру, тогда занимаемый одной частицей объём будет равен $\lambda_e^3 = (2 \pi \cdot \hbar^2/kT_e m_e)^{3/2}$.

Рис.1. Относительные заселённости от энергии возбуждения.

На рис.2 представлены результаты расчётов компонентного состава согласно (6), а также PBC, рассчитанные по формуле Больцмана (7). В точке, соответствующей потенциалу ионизации Xe I (рис. 2), имеется скачок (по сравнению с рис.1). Это вытекает из вывода формулы Саха [2]. Результат, соответствующий рис.2, не учитывал поправку, связанную с обратной величиной длины волны де'Бройля в кубе в правой части уравнения Саха, например, (3), и равную ей концентрацию электронов в левой части. Сравнивая результаты на рис.1 и рис.2, возникает вопрос: — какое из распределений с позиций экспериментатора, определяющего PBC, сдует трактовать как вектор состояния и надо ли делить на $N_e \lambda_e^{3}$?

Рис.2 РВС ХеІ и ХеІІ: 1) $N_0 = 10^{18} cm^{-3}$, $N^+ = 1,8 \cdot 10^{17} cm^{-3}$, $T_e = 1 \Rightarrow B$; 2) $N_0 = 10^{17}$, $N^+ = 5,7 \cdot 10^{16}$, $T_e = 1 \Rightarrow B$; 3) $N_0 = 10^{14}$, $N^+ = 1,8 \cdot 10^{15}$, $T_e = 1 \Rightarrow B$; 4) $N_0 = 10^{15}$, $N^+ = 10^{16}$, $T_e = 2 \Rightarrow B$

Разные представления на рис.1 и рис.2 и разногласия по поводу скачка чисто теоретические. При обработке экспериментальных данных, рассчитав заселенности по формуле (1), с учётом всех присутствующих атомных и ионных линий строим PBC на единой шкале возбуждения и назовем это распределение вектором состояния исследуемой плазмы.

2. Вероятности фото-переходов иона Хе II

Важной характеристикой возбуждённого состояния атома (иона) являются коэффициенты Эйнштейна для спонтанного излучения, или

вероятности радиационных переходов A_{ki} , определяющих время жизни верхнего уровня k, как $\frac{1}{A_{ki}}$. В табл. 1 и 2 представлены результаты расчёта малоизвестной работы [9], в которой достаточно подробно разобран алгоритм промежуточной связи. Радиальные интегралы, необходимые для расчётов вероятностей переходов $A_{ij}/10^6$, рассчитывались по методу Бейтса – Дамгаард (В – D-I) и (В – D-II), а также по методу Хартри – Фока – Слетера (H – F –S) с потенциалом Германа-Скилмана. Угловые зависимости для этих трёх методов проводились в двух приближениях: в *LS* – связи и в рамках промежуточной связи. В случае (В – D-I) использовались для определения эффективного квантового числа экспериментальные значения энергий уровней, дополненные по методу квантового дефекта, в случае (В – D-II) – усреднённые энергии в целом для всей конфигурации и соответственно эффективные квантовые числа.

В табл.1 приведены результаты расчётов вероятностей *s* – *p* фотопереходов иона Xe II в поглощении (с уровня *s* на уровень *p*) согласно упомянутым моделям [9], а также данные других авторов [10-17].

Вероятности *s* – *p* фото-переходов иона XeII Таблица 1

Длина волны λ . Вероятности $A/10^6$ переходов (запись – 0.4 означает

A) – (B–D I), радиальный интеграл по методу Бейтса – Дамгаард с промежуточным типом связи;

В) – (В–D I), радиальный интеграл по методу Бейтса – Дамгаард с *LS*-типом связи;

 $A=0.4\cdot10^{6}$).

C) – (B–D II), радиальный интеграл по методу Бейтса – Дамгаард (усреднённые энергии уровней) с промежуточным типом связи;

D) – (B–D II), радиальный интеграл по методу Бейтса – Дамгаард (усреднённые энергии уровней) с *LS*-типом связи;

F) – (H–F–S), радиальный интеграл по методу Хартри – Фока – Слетера с промежуточным типом связи;

G) – (H–F–S), радиальный интеграл по методу Хартри – Фока – Слетера с *LS*-типом связи.

Примечание: Q) —[10]; W) —[11]; R) —[12]; Y) —[20]; U) —[14]; P) —[15]; K) —[16]; V) —[17].

Переход -	λA	A)	B)	C)	D)	F)	G)	Примечания
$({}^{3}P)6s {}^{2}P_{1/2} \rightarrow ({}^{3}P) 6p^{2}S_{1/2}$	5905. <mark>13</mark>	20.8	27.4	17.5	22.0	23.6	29.7	7.31-W); 1.0-R); 79.0±50% -Y)
$({}^{3}P)6s {}^{2}P_{3/2} \rightarrow ({}^{3}P) 6p^{2}S_{1/2}$	543 <mark>8.96</mark>	21.5	65.7	22.3	56.5	30.1	76.3	2.28-W); 102.0 -R); 376.0±30% -Y)
$({}^{3}P)6s {}^{2}P_{1/2} \rightarrow ({}^{3}P) 6p {}^{2}P_{1/2}$	4919.66	0.22	88.2	0.11	77.2	0.15	104.0	42.3-W); 122.0 -R); 74.0±30% -Y)
$({}^{3}P)6s {}^{2}P_{1/2} \rightarrow ({}^{3}P) 6p^{2}P_{3/2}$	5260.44	29.0	17.6	20.4	15.6	27.6	21.0	8.8-W); 43.9-R); 110.0±50%-Y); 5.6-U); 5.8-P); 150.0±90%-V)
$({}^{3}P)6s {}^{2}P_{3/2} \rightarrow ({}^{3}P) 6p {}^{2}P_{3/2}$	4887.30	32.0	10.6	33.6	9.7	45.5	13.1	24.6-W); 55.7 -R); 42.0±25% -Y)
$({}^{3}P)6s {}^{2}P_{1/2} \rightarrow ({}^{3}P)6p {}^{2}D_{3/2}$	498 <mark>8.77</mark>	25.1	135.0	14.0	91.4	18.9	123	75.3-W); 79.2 -R); 35.0±30% -Y)
$({}^{3}P)6s {}^{2}P_{3/2} \rightarrow ({}^{3}P)6p^{2}D_{3/2}$	465 <mark>1.94</mark>	0.048	30.2	0.029	22.5	0.039	30.4	3.05-W); 55.4 -R); 35.0±25% -Y)
$({}^{3}P)6s {}^{2}P_{32} \rightarrow ({}^{3}P)6p^{2}D_{5/2}$	4921.48	39.1	126.0	37.8	114.0	51.0	154	111.0 -Q); 21.9-W); 140.0 -R); 123.0 ± 25% -Y); 185.0 - P); 50.0 ± 30% -K); 480.0 ± 60% -V)
$({}^{3}P)6s {}^{4}P_{1/2} \rightarrow ({}^{3}P) 6p {}^{4}S_{3/2}$	4883.53	0.21	21.0	0.054	19.4	0.072	26.2	250.0 -Q); 0.01-W); 110.0 -R); 77.0 ± 30% -Y); 17.2 - U); 77.0 ± 30% -K)
$({}^{3}P)6s {}^{4}P_{3/2} \rightarrow ({}^{3}P) 6p {}^{4}S_{3/2}$	3763.37	11.5	9.5	21.4	84.9	28.9	115	50.9-W); 0.64 – U)
$({}^{3}P)6s {}^{4}P_{3/2} \rightarrow ({}^{3}P) 6p {}^{4}P_{3/2}$	5976. <mark>46</mark>	0.12	8.57	0.18	8.5	0.24	11.5	4.96-W); 15.0 -R); 109.0±50% -Y)
$({}^{3}P)6s {}^{4}P_{5/2} \rightarrow ({}^{3}P) 6p {}^{4}P_{5/2}$	5292. <mark>22</mark>	10.2	58.8	11.7	64.2	15.7	86.7	91.0 -Q); 66.3-W); 100.0 -R); 232.0 ± 25% -Y); 8.2 -U); 177.0 - P); 45.5 ± 30% -K); 460.0 ± 60% -V)
$({}^{3}P)6s {}^{4}P_{1/2} \rightarrow ({}^{3}P)6p {}^{4}D_{1/2}$	5191.37	65.4	91.8	60.9	81.0	82.2	109	55.8 -W); 112.0 -R); 320.0±25% -Y)); 150.0 - P); 390.0±60% -V)
$({}^{3}P)6s {}^{4}P_{3/2} \rightarrow ({}^{3}P)6p {}^{4}D_{3/2}$	4603. <mark>03</mark>	8715	76.6	8.1	74.1	10.9	100	100.0 -Q); 31.6-W); 135.0 -R); 69.0 ± 25% -Y); 12.2 -U); 49.0 - P);

								52.3 ± 30% -K);
								128.0±90% -V)
								100.0 -Q); 37.5-W);
(3n)(4n)(3n)(4n)	4215 (0	52.0	0.0	CA 4	0.1	96.0	10.0	39.8 -R);
$(P)os P_{5/2} \rightarrow (P)op D_{3/2}$	4215.00	55.2	8.8	04.4	9.1	80.9	12.2	15.0±50% -Y);
								55.5±30% -K)
								91.0 -Q); 53.3-W);
								102.0 -R);
$({}^{3}P)6s {}^{4}P_{3/2} \rightarrow ({}^{3}P)6p {}^{4}D_{5/2}$	5419 .15	44.8	59.8	40.6	60	54.8	81	212.0±30% -Y);
								52.5±30% -K);
								$326.0 \pm 60\%$ -V)
								125.0 -Q); 93.4-W);
								147.5 -R);
$({}^{3}P)6s {}^{4}P = ({}^{3}P)6n^{4}D$	1811 33	73 5	114.0	77.2	120	104	162	77.0±25% -Y);
$(1)03 \ 15/2 \rightarrow (1)0p \ D_{7/2}$	+0++.55	15.5	114.0	11.2	120	104	102	12.7 -U); 166.0 - P);
								45.5±30% -K);
								$430.0 \pm 60\%$ -V)
$({}^{1}D)6s'{}^{2}D_{3/2} \rightarrow ({}^{1}D)6p'{}^{2}P_{1/2}$	5044.92	63.7	106.0	63.7	106	86	143	
1 (2 1 (2								8.9 -R);
$({}^{1}D)6s' {}^{2}D_{3/2} \rightarrow ({}^{1}D)6p' {}^{2}P_{3/2}$	5971. <mark>13</mark>	2.35	6.56	7.33	6.39	9.9	8.6	$130.0 \pm 50\%$ -Y);
								5.6 -U)
1 . (2 . 1 . (2								112.0 -Q);
$({}^{1}D)6s' {}^{2}D_{5/2} \rightarrow ({}^{1}D)6p' {}^{2}P_{3/2}$	4615.50	79.3	110	89.4	125	121	169	$47.0 \pm 50\%$ -Y);
								2.6 -U)
$d \mathbf{p} \in /2\mathbf{p}$ $d \mathbf{p} \in /2\mathbf{p}$	4522.40	100	101	02.0	146	107	107	140.0 -Q);
$({}^{1}D)6s' {}^{2}D_{5/2} \rightarrow ({}^{1}D)6p' {}^{2}F_{7/2}$	4532.49	106	131	93,8	146	127	197	$21.0 \pm 25\% - Y);$
$(3D) \in (4D) = (3D) \in (2D)$	4002.02	27.0		24.4		22		1.35 -0)
$(P)6s P_{1/2} \rightarrow (P)6p S_{1/2}$	4993.03	27.9		24.4				0.65 W(), 9.5 D).
$({}^{3}P)6s {}^{4}P_{1/2} \rightarrow ({}^{3}P)6p^{2}P_{1/2}$	4269.84	14.0		12.0		16.2		(0.03 - W); (8.3 - K);
$({}^{3}D)6a{}^{4}D$ $({}^{3}D)6n{}^{2}D$	2200.05	104		96.1		116		$10.0 \pm 40\% - 1)$
$(r) 0s r_{3/2} \rightarrow (r) 0p r_{1/2}$	5566.05	104		80.1		110		11100 + 472W
								30.8 P
$({}^{3}P)6s {}^{4}P_{1/2} \rightarrow ({}^{3}P)6p {}^{2}P_{3/2}$	4524.21	6.73		5.05		6.83		2 33 JU): 20.0 - P):
								2.55 = 0, $20.0 = 1$), $62.5 \pm 30\%$ K)
$({}^{3}P)6s {}^{4}P \rightarrow ({}^{3}P)6n^{2}D \rightarrow$	4321.82	6.46		6 31		8 5 2		02.3 ± 3070 -K)
$({}^{3}P)6s {}^{2}P_{1/2} \rightarrow ({}^{3}P)6n {}^{4}S_{2/2}$	5752 56	4 55		2 39		3.23		
	5752.50	1.55		2.37		5.25		19 7-W): 22 6 -R):
$({}^{\circ}P)6s {}^{2}P_{3/2} \rightarrow ({}^{\circ}P)6p^{4}S_{3/2}$	5309.27	36.6		19.7		26.6		$94.0 \pm 30\% - Y$
								Переход обозначен
$(3n) \in (2n) = (3n) \in (4n)$	0102.00	0.70		0.77		1.04		согласно [19]. В[9]
$(^{-}P)6s ^{-}P_{3/2} \rightarrow (^{-}P)6p ^{-}P_{1/2}$	9193.80	0.78		0.77		1.04		$({}^{3}P)6s {}^{2}P_{1/2} \rightarrow ({}^{3}P)6p {}^{4}P_{3/2}$
								13259.0
$({}^{3}P)6s {}^{2}P_{3/2} \rightarrow ({}^{3}P)6p {}^{4}D_{3/2}$	7149.03	7.6		8.63		11.7		

Представленные в табл.1 значения вероятностей отличаются в пределах двух порядков, что затрудняет их выбор.

3. Обработка экспериментальных результатов

Экспериментальная установка, методика измерения и аппаратура подробно обсуждались в работе по определению PBC Xe I [1]. Излучение принималось с четырех положений объектива (рис 3).

Рис. 3. Размещение оптической приёмной системы относительно струи двигателя.

В Положении 1 объектив устанавливался соосно струе ХД и "смотрел" на центр канала.

В Положении 2 излучение отбиралось внешней линзовой системой перпендикулярно оси двигателя на расстоянии 1 см от среза.

Положение 3 излучение отбиралось под углом 14° к оси ХД, начиная от среза канала.

Положение 4 – в другой плоскости, отстоящей от положения 1 на 12° вниз.

Из интенсивностей спектральных линий определяются согласно (1) концентрации возбуждённых состояний N_i (заселённости)с учётом вероятностей радиационных переходов, табл.2.

В табл. 2 указаны: длины волн λ_{ij} ; вероятности фото-переходов $A_{ij}/10^6$ с⁻¹ из табл.1, работы [9] и вероятности из работ [20-21] (обозначения используются аналогично табл.1); заселённости N_i/g_i для Положения 2 с использованием вероятностей [20-21]; энергия верхнего уровня E_i .

Таблица 2

λ, нм	A)	B)	C)	D)	F)	G)	[20-21]	I, y.e.	E _i , эB
381,105	5,4		5,1		14			67	15,0792
384,858	4,6		2,24		6,06			206	16,35554
386,963	19,6		7,24		19,7		25	1298	16,45687
397,258							84	193	19,09651
399,033							40	291	17,19893
402,519	11,5		4,16		11,3			1300	16,45687
405,746							22	601	16,93501
410,495	12,4		4,6		12,5			1003	16,07579
416,216	6,81		6,7		18,2			674	16,35554
421,56	53,2	8,8	64,4	9,1	86,9	12,2		10971	14,47844
422,3							148	1591	18,2157
423,825	0,882		0,913		2,48		91	2785	16,80475
424,538							74	4350	16,79982
425,157							133	1049	18,35919
426,984	14		12		16,2			634	15,44397
429,64							72	923	16,74448
431,051	0,207		0,041		0,113		49	700	18,13855
433,052							129	5920	16,93501
436,92							101	621	16,92959
437,378							32	143	17,31223
440,688							62	706	18,09327
444,813	3,74		8,67		23,5			4758	18,04954
447,09	0,818		0,674		1,83		10	570	16,35554
448,086							133	2701	17,24452
448,595	7,94		4,46		12,1			951	16,07579
452,421	6,73		5,05		6,83			6806	15,28076
452.46805	5								11,0541
453,249	106	131	93,8	146	127	197	21	4293	16,12496
454,089							141	1777	18,13855
455,594							57	282	17,19893
459,205							89	1985	19,08981
459,37	9,66		4,25		11,5			199	16,07579
460,303	8715	76,6	8,1	74,1	10,9	100	69	42287	14,47844
463,264									20,68932
463,33	8,25		3,6		9,7			240	15,26315
465,194	0,048	30,2	0,029	22,5	0,039	30,4	35	2490	15,40906
465,3	0.242		0.203		0.552			179	15,97659
466,849	0,394	12,7	2,8		7,61			7165	16,45687
471,518							52	373	17,65214
476,905	0,62		0,047		0,129		20	2553	15,97659
477,319							25	167	17,36052
478,665									17,87009
478,777	0,494	0,798	1,56	1,44	4,23	3,92	22	1453	16,39075
481,714									17,65214
481,802	1,32	4,52	1,52	3,63	4,13	9,86	12	5321	14,47844

482,335	6,5	81	4,8	51	13	137	49	2496	16,42931
484.32934	ļ								10,9951
484,433	73,5	114	77,2	120	104	162	77	40012	14,09688
485,377	5,16	10,8	2,61	18,7	7,09	50,7		854	16,35554
486,245							72	5952	16,42931
487,65	0,968		1,13		3,06		94	19573	16,12496
488,73	32	10,6	33,6	9,7	45,5	13,1		7650	15,28076
491,966	0,22	88,2	0,11	77,2	0,15	104		1910	15,44397
492,148	39,1	126	37,8	114	51	154		14061	15,26315
492,315									10,95359
498,877	25,1	135	14	91,4	18,9	123	35	1349	15,40906
504,492	63,7	106	63,7	106	86	143		7632	16,45687
508,062	17		12		32		170	1122	16,51245
508,107									17,72005
512,57	4,04	10,3	3,93	16,4	10,7	44,6	54	1213	16,39075
517,882	0,525		0,997		2,71		42	1788	15,97659
529,222	10,2	58,8	11,7	64,2	15,7	86,7	232	38440	13,88035
530,927	36,6		19,7		26,6			1592	15,0792
533,933							188	12631	13,85968
536,807	3,8	7,2	2,6	7,2	7,1	19,8		1419	15,44397
541,915	44,8	59,8	40,6	60	54,8	81	213	29894	14,07294
543,896	21,5	65,7	22,3	56,5	30,1	76,3	376	4378	15,02353
543,992									11,84758
544,039									11,84739
546,039	0,0434	0,637	0,442	0,891	1,2	2,42	27	1095	14,09688
547,261	0,683	3,66	4,27	5,31	11,6	14,4	49	2569	14,09688
553,107	6,46	0,817	4,45	1,14	12,1	3,1	12	2776	14,07294
561,667	5,6	39	0,39	0,39	1,1	1	35	313	15,26315
565,938	3,3		1,7		4,6		130	1806	15,44397
566,756	11	10	14	14	39,5	38	123	2758	14,09285
569,961	0,985	0,677	0,013	0,978	0,036	2,66	74	1012	15,97659
572,691	0,216	1,32	0,038	0,096	0,104	2,62		2328	16,39075
575,103	0,011		0,048		0,13		106	1906	15,40906
575,865	0,091	0,786	0,164	1,01	0,445	2,74	94	1561	16,12496
577,639	2,9	1,6	2	1,5	5,5	4	61	1400	15,28076
589,329	2,47	7,84	3,06	10,4	8,32	28,3	116	1866	16,07579
594,553	0,49	9,9	0,92	12	2,5	33		613	14,09285
597,113	2,35	6,56	7,33	6,39	9,9	8,6	130	1589	16,07579
597,646	0,12	8,57	0,18	8,5	0,24	11,5	109	2624	13,85968
603,62	0,0002	3,3	0,041		0,11		15	1379	13,88035
605,115	1,5	0,48	0,015		0,041		52	3163	13,88035
609,759	6,2	5,5	7,5		20		72	2266	13,85968
610,143	0,7	4,4	0,76	4	2	11		364	15,40906
627,082							89	2832	15,97659
627,754	0,015	0,34	0,071		0,2		15	696	13,88035
629,831	3		1,7		4,5			54	15,28076
630,086	6,84	20,3	4,97	18,1	13,5	49	62	157	15,02353
634,396	0,44	5,2	0,28		0,76		82	443	13,85968

651,283	0,92	2,3	0,72	1,8	2	5		1267	15,28076
652,865	0,0088	0,168	0,013	0,174	0,035	0,47	42	134	16,12496
669,432	0,018	0,74	0,006		0,016			247	13,85968
670,225	10,01		0,28		0,075			253	16,07579
678,871	1	0,42	0,7	0,33	1,9	0,88		112	15,40906
680,574	12,9	14	9,65	14,7	26,2	40	6,1	1171	15,26315
691,022	1,2		1		2,9			297	14,9287
691,082									11,58221
699,088	6,02	14,5	5,26	14,9	14,3	40,3	27	2970	14,09688
708,215	2,4	3,46	0,79	3,63	2,14	9,86		203	15,97659
716,483	0,263	0,169	0,403	0,175	1,1	0,475	69	1009	15,97659
778,704	0,0805		0,128		0,346			108	16,35554
959,135	0,0000		0,038		0,1	100		80	13,88113

4. Обсуждение результатов

По обработке экспериментальных данных были получены заселённости возбуждённых состояний иона Хе II. РВС ионов в зависимости от положения объектива для коэффициентов Эйнштейна *A_{ij}* [20-21] представлены на рис.4.

Рис.4. РВС с вероятностями [20-21] для Положения 1- Положения 4.

РВС для разных участков плазменной струи носят одинаковый характер. Небольшие различия в значениях полученных РВС связанны с тем, что пассивным методом мы выбираем суммарное излучение не только из струи, но и из канала двигателя. Заселенности плазменного факела отличаются от заселенностей плазмы канала, что приводит к флуктуациям.

При обработке экспериментальных результатов остается открытым вопрос, о влиянии разночтения значений вероятностей спонтанных переходов на результаты РВС. Как видно из табл. 2 разбежка величин коэффициентов Эйнштейна, рассчитанных в разных приближениях или полученных экспериментально, может доходить до четырёх порядков. На рисунке 5 приведены РВС Хе II для второго положения приемной оптики и коэффициентов Эйнштейна, указанных в табл. 2.

Рис.5. РВС в Положении 2 для вероятностей из табл. 1.

Из представленного графика видно, что теоретически рассчитанные коэффициенты, для всех шести приближений дают завышенные значения по сравнению с экспериментальными данными [20-21], но тип зависимости сохраняется.

Наиболее близкими РВС с экспериментальными вероятностями оказались значения, рассчитанные в приближении Хартри – Фока – Слетера с *LS* – типом связи, рис 6.

Рис.6. РВС в Положении 2, вероятности с данными [20-21] и G) – (H– F–S), радиальный интеграл по методу Хартри – Фока – Слетера с *LS* – типом связи.

РВС построенные на вероятностях с промежуточным типом связи, рис. 7, имеют хорошее согласование, за исключением приближения Бейтса – Дамгаард в области низких энергий. Два значения N_i для энергии ~ 14 эВ достигают 10¹⁰ см⁻³.

Рис.7. РВС в Положении 2, вероятности с промежуточным типом связи.

8 сравниваются результаты РВС Ha рис. для коэффициентов Эйнштейна рассчитанных в кулоновском приближении: В) и D). В расчётах для случая В) использовались радиальных интегралов эффективные квантовые числа, которые соответствуют энергии каждого рассматриваемого уровня, в случае D бралось эффективное квантовое число, соответствующее всей конфигурации. В обоих случаях энергии угловая зависимость описывается LS-типом связи. Хорошее согласование полученных РВС

наблюдается в промежутке 13-16 эВ. Для переходов с уровней, энергия которых больше 16 эВ модель усредненных значений дает завышенные результаты. Завышение заселённостей для этих же значений энергий возбуждения наблюдается и на рис. 6.

Рис.8. РВС в Положении 2, вероятности с LS – типом связи.

На рис. 9 сравниваются результаты РВС для коэффициентов Эйнштейна, случай **F**), рассчитанные в приближении Хартри – Фока – Слетера с промежуточным типом связи, и РВС с экспериментальными значениями вероятностей [20-21]. В среднем заселённости с использованием теоретических коэффициентов Эйнштейна лежат на полтора порядка выше. Поскольку точность калибровки интенсивностей гарантируется в пределах половины порядка, то не представляется возможным определить, какое приближение G) или F) лучше подходит для описания плазмы ХД. На рис. 10 проводится сравнение РВС для коэффициентов Эйнштейна А) и В), рассчитанных в кулоновском приближении, но с использованием разных типов связи.

Рис.9. РВС в Положении 2, вероятности [20-21] и F) – (H–F–S), радиальный интеграл по методу Хартри – Фока – Слетера с промежуточным типом связи.

Рис.10. РВС в Положении 2, вероятности, радиальный интеграл по методу Бейтса – Дамгаард с промежуточным типом связи и с *LS* – связью.

Заселенности, полученные с учетом коэффициентов Эйнштейна, рассчитанных в рамках промежуточной связи, имеют большой разброс по значениям (три порядка), в то время как значения заселенностей, рассчитанные с экспериментальными вероятностями [20-21], а также в приближении *LS*-связи не имеют ярко выраженных осцилляций по шкале энергий.

РВС атома ксенона для этих же четырёх положений регистрирующей аппаратуры были получены в работе [1]. Представим вектор состояния, характеризующий плазму ХД, совместив РВС атома с РВС иона ксенона, рис.11.

В результате (подобно рис.2) получен важный параметр – вектор состояния, диагностирующий свойства неравновесной плазменной системы.

Рис.11. Вектор состояния, Положение 2 и Положение 4 с вероятностями *A_{ii}* [20-21].

Заключение

По результатам обработки спектров построены PBC для каждого положения 1-4. Распределения для разных участков плазменной струи носят одинаковый характер.

Рассмотрены в рамках шести моделей расчёты вероятностей, включающие радиационные переходы, относящиеся к самым нижним 6*s* – 6*p* уровням. Проведено сравнение с экспериментально полученными результатами других авторов [20-21]. Коэффициенты Эйнштейна отличаются в пределах четырёх порядков.

Для Положения 2, когда излучение отбиралось внешней линзовой системой перпендикулярно оси двигателя на расстоянии 1 см от среза,

PBC коэффициентов представлены с привлечением Эйнштейна, с привлечением разных приближений. Структура РВС рассчитанных чувствительна к выбору модели расчета вероятностей радиационных переходов. Промежуточный тип связи не привёл к ожидаемому результату, РВС на основе этих данных носили ярко выраженные осцилляции по энергиям. Что могло быть вызвано ошибочным определением процентного содержания разных состояний. Использование *LS* – связи совместно со всеми тремя моделями расчёта радиальных интегралов не даёт большого разброса заселенностей. РВС, полученное с экспериментально определенными коэффициентами Эйнштейна [20-21], наиболее хорошо согласуется с результатами, использующими вероятности в приближении Хартри – Фока – Слетера с *LS* – типом связи.

Введение такого параметра, как вектор состояния, оправдано. Это даёт возможность утверждать, что подобно тому, как в атомной физике для каждого атома существует своя схема уровней (Гротриана), соответствующая длинам волн линейчатого спектра, так и всякая плазма имеет свой "штрихкод" в виде индивидуальных распределений возбуждённых состояний, получаемых из спектров.

Библиографический список

1. Криворучко Д.Д., Скрылев А.В., Скороход Е.П. Определение концентраций возбужденных состояний и вероятностей радиационных

переходов XeI плазмы Холловских двигателей // Труды МАИ. 2017. № 92. URL: http://trudymai.ru/published.php?ID=76859

2. Грим Г. Спектроскопия плазмы — М.: Атомиздат, 1969. — 452 с.

 Лохте – Хольтгревен В. Методы исследования плазмы. - М.: Мир, 1971.— 552 с.

Бугрова А.И., Данелия И.А., Ермоленко В.А., Калихман Л.Е.
 Определение электронной температуры плазменной струи ускорителя с
 замкнутым дрейфом // Журнал технической физики. 1977. №47. С. 2310-2311.

5. Бугрова А.И., Ермоленко В.А., Калихман Л.Е. Излучательные характеристики ксенона в разреженной плазме // Теплофизика высоких температур. 1979. Т. 17. № 5. С. 916-921.

 Гаврилова А.Ю., Киселёв А.Г., Скороход Е.П. Распределения заселенностей атомных уровней в квазистационарной плазме аргона // Теплофизика высоких температур. 2016. Т. 54. № 2. С. 171-179.

 Скороход Е.П. Спектроскопические методы исследования физико– химических и тепловых процессов в плазменных устройствах: Диссертация доктора техн. наук. – М.: 2003. – 322 с.

8. Гаврилова А.Ю., Киселёв А.Г., Скороход Е.П. Диаграммы метаравновесных состояний тяжёлых инертных газов // Теплофизика высоких температур. 2014. Т. 52. № 2. С. 174-185.

 Годунов А.Л. Земцов Ю.К., Карчевский В.Е., Скороход Е.П. Расчёт сил осцилляторов и вероятностей переходов иона ксенона ХеП // Депонирование в ВИНИТИ, 1985, № 4593-85, - 91 с. L. Allen, D.G.C. Jones, D.G. Schofield, J. Opt. Soc. Am. v. 59, № 7, p. 842, 1969.

11. Th. M. El. Sherbini, J. Phis. B: Atom, Molec. Phis., v. 9, № 10, p. 1665,
1976.

12. S. Garpman, N. Spector, J. Opt. Soc. Am. v. 66, № 9, p. 904, 1976.

 Груздев П.Ф. Вероятности переходов и радиационные времена жизни уровней атомов и ионов. - М.: Энергоатомиздат, 1990, - 223 с.

 Самойлов В. П., Смирнов Ю. М., Старикова Г.С. Вероятности переходов и сечения возбуждения XeII // Оптика и спектроскопия. 1975. Т. 37. С. 1222.

 Подбиралина В. П., Смирнов Ю. М., Стегнова Н.В. Вероятности переходов некоторых линий KrII и XeII // Оптика и спектроскопия. 1973. vol. 34. no. 4. C. 809.

 Fink U., Baskin S., Bickel W.S. Transitions and level lifetimes in Ne II, III, Ar II, III, Kr II, III and Xe II // Journal of Quantitative Spectroscopy and Radiative Transfer, 1970. vol. 10, pp. 1241-1256.

17. Konjevic N., Lesage A., Fuhr J.R. and Wiese W.L. Experimental Stark Widths and Shifts for Spectral Lines of Neutral and Ionized Atoms (A Critical Review of Selected Data for the Period 1989 Through 2000) // Journal of Physical and Chemical Reference Data, 2002, vol. 31, no. 3, pp. 819.

Гудзенко Л.И., Яковленко С.И., Плазменные лазеры. - М.: Атомиздат,
 1976. - 256 с.

19. Стриганов А.Р., Свентицкий Н.С. Таблицы спектральных линий нейтральных и ионизированных атомов. - М.: Атомиздат, 1966. - 899 с.

20. Miller M.H., Roig R.A. Transition Probabilities of Xe I and Xe II // Physical Review. 1973. A8. p. 480-487.

21. Wiese, W.L. and Martin, G.A., "Wavelengths and Transition Probabilities for Atoms and Atomic Ions, Part II: Transition Probabilities," United States National Bureau of Standards NSRDS-NBS 68, 1980, 148 p.

22. Потапенко М.Ю. Разработка и исследование стационарного плазменного двигателя с полым магнитным анодом малой мощности // Труды МАИ. 2014. № 74. URL: http://trudymai.ru/published.php?ID=49261

23. Островский В.Г., Смоленцев А.А., Соколов Б.А. Опыт создания электроракетных двигателей большой мощности в ОАО «Ракетно-космическая корпорация «Энергия» имени С.П. Королева» // Труды МАИ. 2012. № 60. URL: <u>http://trudymai.ru/published.php?ID=35380</u>