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Correlation-based constellations of satellites for local 

telecommunication and monitoring services   

M. Pontani, P. Teofilatto 

Abstract 

Low Earth orbit constellations deserve several advantages with respect to geostationary 

platforms, i.e. lower costs for satellite development and launch, increased imaging resolution, as 

well as reduced power requirements and signal time delays. This research is concerned with an 

original method for constellation design, based on the use of a correlation function. All satellites are 

placed in repeating ground track orbits, and two conflicting requirements are considered: the 

maximization of the maximum continuous coverage and the minimization of the maximum revisit 

time of a target area located on Earth surface. A suitable way of determining the related optimal 

constellation configurations is based on avoiding overlapping between visible passes of distinct 

satellites. With this intent, an analytic expression can be derived for the correlation function, which 

is employed to evaluate the overlapping between visible passes. Then an algorithmic search for the 

zeros of this function allows determining some constellation configurations with the desired 

characteristics. This heuristic method turns out to be a successful approach for constellation design 

and several results are reported with reference to different latitudes of the target area and distinct 

repeating orbits.  

 

 

 

1. Introduction 

Low Earth orbit constellations deserve several advantages with respect to geostationary 

platforms, i.e. lower costs for satellite development and launch, increased imaging resolution, as 

well as reduced power requirements and signal time delays. These circumstances have recently 

induced a growing interest towards low Earth orbit constellations by commercial 

telecommunication and navigation ventures. In general, constellation build-up strategies include, as 

first step, an accurate coverage analysis aimed at fixing an optimal set of parameters, such as the 

number of satellites and their spatial distribution, with reference to the required operational 

purposes. Numerical and geometrical approaches have been employed for optimizing constellation 

performance; this is due to the fact that analytical solutions to such optimization problems are still 

elusive. 
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Common classes of constellations include Walker symmetric rosette constellations [1-4], 

circular polar orbit constellations [5, 6], highly elliptical orbit constellations [7], geosynchronous 

orbit constellations, and polyhedral constellations [8]. Most of these constellations show a high 

degree of symmetry and are particularly suitable for the continuous coverage of large areas. 

Moreover, sparse coverage constellation design has been studied by several researchers. 

Constellations with a constrained (maximum) revisit time were analyzed by Der-Ming and Wen-

Chiang [9] with the purpose of minimizing the number of satellites. Constellations with minimum 

revisit time were designed by Lang and Hanson [10]. Lang et al. [11, 12] applied a genetic 

algorithm in order to determine constellations such that either the maximum or the average revisit 

time is minimized. 

This paper is concerned with an original approach to constellation design, with the final 

intent of optimizing the visibility properties of a target region located on the Earth surface. Two 

types of requirements are considered: the maximization of the maximum continuous coverage of the 

target, and the minimization of the maximum revisit time, which is the time interval when the target 

is not visible by any satellite belonging to the constellation. Clearly, these requirements are 

conflicting and apply to different scenarios. For instance, an adequate continuous coverage may be 

required for executing planned operations, whereas in other contexts (war scenarios or calamities) 

the capability of observing a specific location opportunely needs to be ensured. This kind of survey 

activity is often referred to as “early warning monitoring”. Other operative situations may suggest 

the combination of the two mentioned basic requirements. 

The method proposed in this paper is based on the use of a correlation function to perform a 

global search over the entire set of constellations whose satellite visible passes do not overlap. 

Circular orbits with repeating ground tracks are considered. These orbits were shown to have better 

partial coverage properties with respect to those with non repeating ground tracks [13]. In addition, 

the use of repeating orbits allows focusing the analysis on the period of repetition only. The visible 

passes over the target are translated into a binary time-dependent function, named “visibility 

function”, which identifies the time intervals of visibility. A suitable way of increasing the 

continuous coverage and simultaneously reducing the revisit time consists in avoiding the 

overlapping among visibility functions of distinct satellites. This goal is here achieved by 

annihilating the correlation function, which is a direct measure of the overlapping of distinct 

visibility functions. 

This paper is organized as follows: Section 2 defines repeating ground track orbits, whereas 

the method for determining the orbit elements ensuring the maximum visibility of the target area 

from a single satellite is described in Section 3. Section 4 is concerned with the strategy for 
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constellation design. The so-called “visibility function” is introduced and the correlation function is 

described as the central mathematical tool to derive all the time delays among satellite visible 

passes over the target. Section 5 presents the results (i.e. the optimal constellations) for some cases 

of possible interest. 

 

2. Repeating ground track orbits 

The constellation is assumed to be composed of several satellites placed in equally inclined 

circular orbits with an identical altitude H. In this study orbits are considered such that 

perturbations, as atmospheric drag, solar radiation pressure, and third body effects can be regarded 

as negligible for the purpose of constellation design. In contrast, Earth oblateness ( 2J  zonal 

harmonic perturbation) produces significant effects on the orbital elements and is considered in the 

model. In particular, 2J  perturbation affects the right ascension of the ascending node (RAAN),  , 

the argument of perigee,  , and the mean anomaly, M: 
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In the relationships (1)-(3) (holding for circular orbits) ER , E , and 2J  are the Earth radius, 

planetary constant, and oblateness coefficient, whereas a and i are the orbit semi-major axis (SMA) 

and inclination, respectively. Due to (1)-(3), if 0
, 0 , and 0M

 are the initial values (at 0 0t 
) of  

 ,  , and M, the related time histories are linear with time. However, for circular orbits only the 

argument of latitude M    is meaningful because the perigee is not defined. As a result, the 

time-varying orbital elements 
 t

 and 
 t

 are given by: 

    0 ,t a i t    (4) 

    0 ,t a i t     (5) 

where 
      0 0 0, , ,   and  a i a i M a i M      

. All the satellites are assumed to have 

identical inclination and SMA (or altitude H for circular orbits) in order to avoid differential actions 
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by 2J  perturbation on each of them. This circumstance would cause a substantial alteration of the 

performance attainable by the constellation. 

An orbit is termed repeating when phased with Earth rotation, i.e. when the trajectory 

ground track is periodically repeated. This occurs if the satellite completes tN
 orbits in m nodal 

days: 

 
   , ,n t nmD a i N T a i

                   (6) 

In (6): 
2nT  

 is the nodal orbital period (i.e., the time interval between two consecutive 

ascending node crossings), and 
 2n ED   

 is the nodal day (i.e. the time required for the 

Earth to make a complete rotation with respect to the orbital plane; E  denotes the Earth rotation 

rate). Both nT
 and nD

  depend on the orbit SMA, a, and inclination, i. This fact implies that the 

ratio 
/t tr N m

, which represents the number of orbits per nodal day, depends on a and i. 

Conversely, once 
 and tN m

 are specified, the orbit inclination can be expressed as a function of a 

through (6). In this research, five possible choices for 
 ,tN m

 are considered, corresponding to 

different ranges of altitudes as the orbit inclination varies from 0 to 90 degrees. These ranges are 

reported in Table 1, with the respective values of tN
 and m. 

 

 
Table 1: Minimum and maximum altitude,   

minH  and maxH , depending on  ,tN m                                                                  

 tN  m  tr    kmminH    kmmaxH  

14 1 14 812.4 874.5 

43 3 14.333 696.1 761.4 

29 2 14.5 639.6 706.5 

44 3 14.667 584.1 652.6 

15 1 15 476.0 547.9 

 

 

Ground tracks of satellites in circular repeating orbits exhibit a typical reticular shape. Two 

types of grid exist: the first kind (named grid  ) has coincident ascending and descending 

equatorial crossings, unlike the second one (named grid  ). This feature depends on the sum 
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 tN m
, as proved in Appendix 2: grid   corresponds to 

 tN m
 even, grid   to 

 tN m
 odd. 

Figures 1 and 2 illustrate two examples of these two types of repeating ground tracks.  

 

 
 

Fig. 1: Grid  . Ground track of a repeating satellite  43,  3tN m   

 



 6 

 

 

Fig. 2: Grid  . Ground track of a repeating satellite  29,  2tN m   

From the inspection of Figures 1 and 2 it emerges that each grid presents local symmetry 

with respect to meridians passing through grid interception points (two of these meridians are 

portrayed in Figures 1 and 2). Basically, this feature is related to the circularity of the orbits and 

will be employed in Section 3. Moreover, due to the circularity of the orbits again, the total duration 

of visibility for a single satellite is proportional to the geometrical length of the visible ground track 

arcs, corresponding to the satellite instantaneous positions from which the entire target area is 

visible. 

 

3. Optimal orbital elements for a single satellite  

Constellation design is aimed at ensuring some visibility properties of a target region from 

the satellites that form the constellation. The target area is assumed to be delimited in longitude 

( l u   
) and latitude ( l u   

), and is considered visible from a single satellite if all the 

points belonging to this area are in view with an elevation angle   greater than the minimum value 

min
. This minimum value is related to the onboard instrumentation. In this study, the following 

values of min
 are assumed for two types of constellation (associated to different onboard 

instruments): 
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 constellation for telecommunication services: 5 degmin   

 constellation for monitoring services: 40 degmin   

With reference to ground tracks of repeating satellites, the longitudinal separation between 

two adjacent (generally not consecutive) ascending nodes is 
2 tN

, and this is also the angular 

separation of longitudinal repetition at all latitudes. Hence, when the maximum duration of 

visibility occurs for a specified target region (associated to the average longitude 
 0.5av l u   

 

and to the average latitude 
 0.5av l u   

) the same maximum duration also occurs for other 

regions with the same longitudinal and latitudinal extension. Due to the basic properties of 

repeating ground tracks of circular orbits, these regions are simply shifted in longitude and two 

cases can be distinguished: 

1.  tN m  even (grid  ): all the regions associated to  2 ,av t avk N    , with 

0,..., 1tk N  , are characterized by the same total duration of visibility 

2.  tN m  odd (grid  ): all the regions associated to  2 ,av t avk N    and 

 2 ,av t t avN k N      , with 0,..., 1tk N  , are characterized by the same total 

duration of visibility 

Now, what will be demonstrated is that, for a given orbit, the total duration of visibility, 

 vis

totT
, has an extremum when the visible ground track is symmetric with respect to the central 

meridian of the target area, as shown in Fig. 3(c). This property can be deduced in the following 

fashion:  

 let the central meridian be a line of local symmetry for the repeating ground track; this 

circumstance implies that also the visible ground track arcs are symmetrical with respect to 

the central meridian of the target region, as in Fig. 3(c) 

 the symmetrical situation portrayed in Fig. 3(c) is assumed to correspond to a specific value 

0  of the initial RAAN and to a visibility duration 
( )

,

vis

tot extrT  

 if two displacements are imposed on  0 0 0 0 0 (a). ,  (b). a b        , the resulting 

grids are shifted towards East and towards West by the same angle (Figures 3(a) and 3(b)) 

 the total length of the visible ground track arcs is the same in these two situations (illustrated 

in Figures 3(a) and 3(b)), so also the total duration of visibility is the same and is equal to 

 ( ) ( )

,

vis vis

tot extrT T  in both situations 
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 as a consequence, depending on ( )visT , the symmetric condition corresponds to a maximum 

or to a minimum for the total visibility: if ( ) 0visT  , ( )vis

totT  has a minimum for 0 0  , 

otherwise, if ( ) 0visT  , ( )vis

totT  has a maximum 

As a result, all the values of 0  yielding such a symmetry must be checked in order to find the 

optimal value, which maximizes ( )vis

totT .  

Due to the geometric features of the grids  and  , the symmetry condition can be 

examined making reference to the equatorial region of the ground tracks. As a matter of fact, if at 

the equator the ground track is symmetric with regard to the central meridian of the target area, then 

this symmetry also holds for the visible ground track arcs. Ground tracks can be shifted towards 

East or West by simply varying the initial RAAN, 0
, so the simplest way of guaranteeing such a 

symmetry consists in choosing 0 0 
 (satellite at the ascending node for 0 0t t 

), and 0
 

between the following two values: 

1. For grid   (  tN m  even, Fig. 4(a)): 

 0 0 0 0A.           or          B. g av g av

tN


           (7) 

2. For grid   (  tN m  odd, Fig. 4(b)): 

 0 0 0 0A.           or          B. 
2 2

g av g av

t tN N

 
            (8) 

where 0g  is the Greenwich initial sidereal time. It is worth mentioning that all the optimal values 

of 0  are repeated with periodicity equal to 2 tN . 
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  Fig. 3: Visible ground tracks corresponding to different values of 0 . (a), (b) Asymmetric     

              visible ground tracks. (c) Symmetric visible ground track 

 

If tN
 and m are specified, for each of the two possible values of 0

 a numerical 

investigation on the SMA is performed with the purpose of maximizing the total duration of 

visibility. This search is based on the following points: 

 the target region is in view if and only if the following points are visible at a time: 

 1 ,l lP   ,  2 ,l uP   ,  3 ,u uP   , and  4 ,u lP    

 for each value of a, i is calculated through (6), and the time-dependent East, North, and up 

coordinates   , , ,  1,  2,  3,  4k k kx y z k   in the local frame centered in kP   1,2,3,4k   are 

calculated 
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 the satellite is in view from kP  if the following relationship holds: 

 
 

   
2 2

tan tan
k

min

k k

z t

x t y t

  

      

 (9) 

 each time interval of visibility is such that (9) holds for all the four points  
1,2,3,4k k

P


: this is 

the basic condition that allows determining the total duration of visibility 

 finally, the optimal value of the SMA a, which maximizes the total duration of visibility, is 

selected, and the optimal value of the orbit inclination i is calculated through (6) 

These steps lead to determining the optimal values of all the orbital parameters for the first 

satellite belonging to the constellation. Definitely, the maximization of the total duration of 

visibility, achieved for the first satellite through the optimal selection of its orbital elements, leads 

to the identification of a specific ground track. 

 

 
 

Fig. 4: Equatorial regions of repeating circular ground tracks: (a) grid  ; (b) grid   

 

 

It is desirable that all the remaining satellites of the constellation preserve the same visibility 

properties. To do this, their orbits must be associated to the same ground track, i.e. their motion 

relative to the Earth surface must be identical to that of the first satellite, albeit delayed. Section 4 

addresses the central issue of determining the optimal delays that characterize the relative motion of 

the constellation satellites.  
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4. Strategy for constellation design 

This section is focused on the original strategy that will be employed to identify optimal 

constellation configurations, with reference to two distinct (conflicting) requirements: 

 Requirement A: maximize the maximum coverage, i.e. the maximum continuous time interval 

of visibility of the target area from the constellation  max MCov  

 Requirement B: minimize the maximum revisit time, representing the maximum time interval 

when the target region is not visible from any satellite  min MGap  

The target area is considered in view when it is visible from at least one satellite. As 

repeating orbits have been assumed for the constellation satellites, the mentioned requirements can 

be referred to the period of repetition. 

 

4.1. Visibility function 

After selecting the orbit SMA, inclination, and initial RAAN, for a single satellite all the 

intervals of visibility (termed “white segments” hence forward) and the gaps of non-visibility 

(termed “black segments”) can be determined. An auxiliary function, named “visibility function”, 

depending on the actual time t and directly related to these segments, can be introduced as: 

       1

0,         if the satellite 1 is not visible at instant t
            0

1,          if the satellite 1 is visible at instant t
t n nV t t T N T mD


   


 (10) 

Now, let n be the number of white segments. 
  

1,...,

in

l
l n

t


 and 
  

1,...,

out

l
l n

t


 respectively identify the 

starting and the terminal point of each of them. Then, 0  and l lt T  are defined by: 

 
          0 0.5                                         1,...,
out in out in

l l l l l lt t t T t t l n      (11) 

They respectively represent the medium point and the length of each white segment. Through (11), 

 1V t  can be written as: 

        1 0

1

0    if    2
rect           where          rect      0

1    if    2
l

n

T l B

l

t B
V t t t t B

t B

 


   


  (12) 

Due to periodicity, black and white segments are repeated for t T , so (10) and (12) can be 

formally extended to  1

PV t : 

                                            1 1 0

1

rect      with     0
l

n
P

T l

k k l

V t V t kT t kT t t
 

  

 
      

 
    (13) 
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Then, at the time 1,2t   a second satellite (with SMA and inclination identical to the first) is 

supposed to cross the equator (from South to North) at the same point relative to Earth surface. The 

related functions  2

PV t  and  2V t  are respectively  1

PV t  and  1V t  shifted forward by 1,2 : 

        2 1 1,2 2 1 1,2 ,              0P P

k k

V t V t V t kT V t kT t 
 

 

          (14) 

The overlapping of these visibility functions (  1

PV t  and  2

PV t ) is useful for the identification of 

the maximum coverage (MCov) and of the maximum gap (MGap), as illustrated in Fig. 5 for a pair 

of satellites whose visibility functions partially overlap. 

 

 

 

Fig. 5: Overlapping of visibility functions (schematic example) 

 

4.2. Description of the method 

With reference to a two-satellite constellation, a suitable way of increasing the continuous 

coverage duration and simultaneously reducing the gap duration follows two basic principles: 

 

 

A. Avoid the overlapping of two white segments (“non-overlapping condition”) 

B. choose the delay 1,2  such that two white segments have a single adjacency point 

(“adjacency condition”) 

According to this approach, the target location will be in view from a single satellite at a time and, 

in addition, an instant will exist when the first satellite goes out of visibility and the second one 
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goes into visibility (or vice versa). Yet, the adjacency condition is not strictly necessary for the 

purpose of minimizing the maximum gap. On the contrary, a globally “sparse” and homogeneous 

disposal of white segments can reveal suitable in such a situation. This sparse disposal can be 

achieved by inserting a white segment of the second satellite just in the middle of a black segment 

of the first. This fact means that a visible pass of the second satellite is inserted just mid-way 

between two consecutive passes of the first. As an immediate consequence, sparseness delays are 

given by 
       1

1,2 1,2 2  1,..., 1
h h C

adjh N 


   , where 
   1

1,2 1,2 and 
h h

 


 are two consecutive adjacency 

delays and 
 C

adjN  is their total number. Fig. 6 shows a schematic example of the sparse disposal of a 

white segment of the satellite 2 between two white segments of the satellite 1: a right or left shift of 

the segment C increases the maximum gap.  

 

 

 

Fig. 6: Example of sparse disposition of a white segment of the satellite 2 between two of the 

             satellite 1 

 

Once 1,2
 has been determined, the visibility function 

 1 2

PV t  can be generated, and 

identifies the white segments and the black segments for the system composed of the two satellites. 

With the above assumption A, 
 1 2

PV t  is given by: 

          1 2 1 2 1 1 1,2

P P P P PV t V t V t V t V t        (15) 

The described strategy can be very easily extended to consider 4, 8 or 16 satellites.  1 2 2,4

PV t    

represents a second couple of satellites, delayed by 2,4  with respect to the first. Hence, for the 

system composed of the four satellites the visibility function  1 4

PV t  can be written as follows: 

          1 4 1 2 3 4 1 2 1 2 2,4

P P P P PV t V t V t V t V t           (16) 

Obviously, for 8 and 16 satellites similar relationships hold. 

The above non-overlapping assumption A forces the following integral to vanish: 



 14 

 
             1 2 1,2 1 2 1 1 1,2 0               1,...,
h hP PR V t V t dt V t V t dt h s 

 



 

       (17) 

All allowed delays 
  1,2

1,...,

h

h s



 must annihilate  1 2R  , which can be seen as a correlation function 

depending on 
 
1,2

h
   . The adjacency condition holds if, in addition to the condition (17), 

 1 2 1,2 0R    for  
   

1,2 1,2 1,2 1,2  or  
h h

          (where   is an arbitrary small, positive number). 

Due to periodicity of the visibility functions, the correlation function (17) is repeated for t T , so 

the analysis can be made over the interval  0,T . The correlation integral is composed of six terms 

and in  0,T  has the following expression, derived in [14]: 

     

        

1 2 1,2 1,2 0 0 1,2 0 0
, ,1,...

1,...,

1,2 1,2 1,2 0 0 1,2 0 0
, ,1 1,...

1

trapz trapz

   tri tri trapz trapz
l l

T T T Tn
n

n

l l
T T T T T Tl n

R T t t T t t

T T T t t t t

   

   

   


 

   


 

  

   




 

 
 

 
               

 

 
               

 




,...,n



 (18) 

where 

          
,

2 2

1    if    0
tri        and       trapz tri tri

2 2
0           if   

T T T TB T T

T TB T T
B

B
   

 

  




   


 


   

  
 

 (19) 

The analytic expression (18) of the correlation function is extremely useful since both accuracy and 

computational efficiency in finding all adjacency delays are greatly improved. In addition, the 

function  1 2 1,2R   is symmetric with respect to 1,2 2T  , so the allowed delays 
  1,2

h
  can be 

searched in the interval  0, 2T : this circumstance further enhances effectiveness. 

 

 

 

4.3. Algorithmic search for allowed time delays 

The fulfillment of the requirements A and B can be achieved after comparing all the 

constellation configurations associated to the zeros of the correlation function. Each configuration 

corresponds to a sequence of time delays. The algorithmic search of all the allowed time delays is 

addressed in this subsection. 
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First, from the inspection of the expression (18) of the correlation function 
 1 2 1,2R  , it 

turns out that it is composed of several (partially) overlapping terms. Allowed delays must 

annihilate all of them. A necessary condition for the existence of zeros of 
 1 2 1,2R   is that 

  max 2l
l

T T  (20) 

otherwise no value for 1,2  exists that annihilates both the third and the fourth term in (18). Yet, the 

condition (20) is always met in applicative situations regarding LEO constellations, because the 

duration of the visible passes is much shorter than the period of repetition of the satellite orbits. 

As a preliminary step, for the sake of simplicity, the auxiliary matrices 
 ,  ,       n n

 are 

introduced. Their elements are defined as follows: 

 0 0                                         t t T T                   (21) 

An immediate consequence of (21) is that:             . Moreover, the intervals of 

admissibility for 1,2  are such that every single term in (18) vanishes. These intervals are listed 

below:  

1.      1,2 0 0 1,2 1,2
,

1,...,
trapz  :             

1,...,T T

n
T t t T T

n 

   


    

 


             

 (22) 

2.    1,2 0 0 1,2
,

1,...,
trapz  :             

1,...,T T

n
T t t T

n 

  


  

 


          

 (23) 

3.      1,2 1,2 1,2tri  :        1,...,       so      max
l

l l l
T l

T T l n T       (24) 

4.      1,2 1,2 1,2tri  :        1,...,       so      max
l

l l l
T l

T T T T l n T T          (25) 

5.    1,2 0 0 1,2
,

1,...,
trapz  :             

1,...,T T

n
t t

n 

  


  

 


        

 (26) 

6.      1,2 0 0 1,2 1,2
,

1,...,
trapz  :             

1,...,T T

n
t t

n 

   


    

 


           

 (27) 

It is worth mentioning that these intervals must be included between 0 and T to preserve 

significance.  

Now, candidate adjacency and sparseness delays can be determined through the following steps: 

1. The set of the candidate adjacency delays is composed of all the extreme values delimiting the 

intervals of admissibility; their number is denoted with 
 C

adjN . In short, the following scheme can 

be followed:  
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1,2 1,2

1,2 1,2

1,...,if     0              and       
            with     

 if     0                 and       1,...,

nT

T n

  

  

    

     

      


     

 (28)

    1,2 1,2max        and       maxl l
l l

T T T     (29) 

2. Once all candidate adjacency delays have been determined, the set of the candidate sparseness 

delays includes the following values: 

 

   
  

1

1,2 1,2

1,2           1,..., 1
2

h h

C

adjh N
 






    (30) 

where 
   1

1,2 1,2 and 
h h

 


 are two consecutive adjacency delays. 

Definitely, the algorithmic search of allowed delays can be summarized as follows: 

(a) all candidate adjacency delays are calculated by means of (28), (29) and  

(b) all candidate sparseness delays are calculated through (30) once candidate adjacency delays 

are determined 

(c) for each candidate delay, if all the conditions (22)-(27) hold, the candidate delay becomes 

an allowed delay (which does not generate overlapping among visibility functions) 

If the maximization of MCov is asked for (Requirement A), the point (b) can be skipped, 

since the sparseness condition is not compatible with increasing the maximum duration of the 

continuous coverage. 

All the above steps and considerations can be repeated making reference to 2,4 4,8 8,16,  ,    
 

when 4, 8, and 16 satellites are considered. 

Basically, discrete sets of allowed delays exist. Let s be the number of all the allowed delays 

  1,2
1,...,

h

h s


  that generate 
 1 2

PV t ; for each 
 
1,2

h


, the set 

  ,

2,4
1,..., h

h j

j s


  of allowed delays that generate 

 1 4

PV t  can be determined. In the same way, for each 
 ,

2,4

h j


, the set 

  , ,

4,8
1,..., hj

h j z

z s



 of allowed delays 

generating 
 1 8

PV t  can be found, and so on. This process results in the generation of a typical tree 

structure, which includes all the allowed time delays. The total number of configurations wN
 for 

constellations of w satellites is given by: 

                       2 4 8

1 1 1

                                        
hss s

h hj

h h j

N s N s N s
  

                              (31) 

 

4.4. Constellation orbital elements 
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The determination of the optimal time delays allows deriving the orbital elements of all the 

satellites that form the constellation. As discussed in Section 3, at the initial time the first satellite is 

assumed to be at the ascending node, i.e. 01 0 
. Its initial RAAN, 01

, is selected through the 

method described in the same section. All the remaining satellites are associated to the same ground 

track, i.e. their motion relative to the Earth surface must be identical to that of the first satellite. If 

the second satellite is delayed by 1,2
 with respect to the first, then it must be at the ascending node 

at 1,2t 
; this circumstance implies that 

      2 1,2 02 1,2 02 1,2, 2           so          2 ,a i a i               (32) 

In addition, the second ground track preserves the same property of local symmetry with respect to 

the target area if the following relationship holds: 

    2 1,2 1,2 01 0g av g av                 (33) 

where  1,2 0 1,2g g E       is the Greenwich sidereal time at 1,2t  . After introducing (4), (33) 

becomes: 

  02 01 1,2,E a i        (34) 

If (32) and (34) hold, the two satellites cross the equator exactly at the same point relative to the 

Earth surface and this circumstance ensures that they are associated to the same ground track. 

The orbital elements of the remaining satellites can be obtained by employing the 

corresponding time delays with respect to the first satellite in (32) and (34), instead of 1,2
. These 

delays are straightforward to deduce and for satellites 3 through 8 are given by: 

    3 2,4 4 2,4 1,2 5 4,8 6 4,8 1,2 7 4,8 2,4 8 4,8 2,4 1,2,  ,  ,  ,  ,  t t t t t t                            (35) 

 

5. Optimal constellation configurations 

The method described in Section 4 is applied to several cases of possible practical interest. 

Four regions have been selected as target areas: 

 Region 1: 120 degl    and 116 degu   ; 32 degl   and 35 degu   

 Region 2: 46 degl    and 42 degu   ; 60 degl   and 63 degu   

 Region 3: 100 degl    and 98 degu   ; 19 degl   and 20 degu   

 Region 4: 1 deg
l

    and 1 degu  ; 51 degl   and 52 degu   
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Region 1 corresponds to a relevant part of California, including the entire metropolitan area 

of Los Angeles and San Diego. Region 2 is located on the southern part of Greenland. Region 3 

includes the metropolitan area of Mexico City, and, finally, region 4 corresponds to the 

metropolitan area of London. 

The performance attained by four- and eight-satellite constellations is summarized in Tables 

2 and 3, which refers to different choices of tN
 and m (resulting in different altitudes of the satellite 

orbits), and to the basic requirements A and B. The performance of monitoring constellations turns 

out to be inferior in all cases, due to the higher elevation angle required for visibility, albeit regions 

3 and 4 are smaller in extension with respect to regions 1 and 2. Some constellation configurations 

and visibility spots are portrayed in Figures 7-10. In all cases, the maximum continuous coverage of 

a target corresponds to the set of the minimum allowed time delays yielding adjacent and non-

overlapping visibility functions. This is a very general and foreseeable result for all location 

latitudes. It consists in concatenating the widest time intervals of visibility of all the satellites, 

whose related visibility spots assume the aspect shown in Fig. 8. 

 

 

 

Fig. 7: Two 8-satellite telecommunication constellations optimal with respect to requirement 

             A, with reference to region 1 (a) and to region 2 (b) 
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Fig. 8: Visibility spots of two 8-satellite telecommunication constellations (with 15tN    and 

1m  ) designed to fulfill requirement A, with reference to region 1 (a) and to region 2 

(b) 
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Fig. 9: Some 8-satellite telecommunication constellations optimal with respect to requirement 

B, with reference to region 1 (left column) and to region 2 (right column) 
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  Fig. 10: Some 8-satellite monitoring constellations optimal with respect to requirement B,  

               with reference to region 1 (left column) and to region 2 (right column) 
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Table 2. Constellation performance for target regions 1 and 2 

  Telecommunication constellation Region 1 Region 2 

  14,  1tN m   Req. A Req. B Req. A Req. B 

MCov (min) 49.13 15.19 49.05 22.58 Constellation of  

4 satellites MGap (min) 733.03 45.99 552.72 44.15 

MCov (min) 98.26 12.28 98.10 24.42 Constellation of  

8 satellites MGap (min) 683.90 19.20 503.67 16.55 

  43,  3tN m   Req. A Req. B Req. A Req. B 

MCov (min) 44.03 19.12 44.96 21.92 Constellation of  

4 satellites MGap (min) 819.64 86.83 640.47 43.50 

MCov (min) 88.06 14.32 89.92 21.54 Constellation of  

8 satellites MGap (min) 775.61 32.19 595.51 17.35 

  29,  2tN m   Req. A Req. B Req. A Req. B 

MCov (min) 41.01 18.18 42.42 10.61 Constellation of  

4 satellites MGap (min) 812.10 86.72 636.03 43.37 

MCov (min) 82.02 10.25 84.85 10.61 Constellation of  

8 satellites MGap (min) 771.09 32.06 593.60 17.71 

  44,  3tN m   Req. A Req. B Req. A Req. B 

MCov (min) 38.56 16.05 39.95 9.99 Constellation of  

4 satellites MGap (min) 902.24 87.40 725.74 43.33 

MCov (min) 77.12 19.28 79.90 9.99 Constellation of  

8 satellites MGap (min) 863.68 32.00 685.80 17.99 

  15,  1tN m   Req. A Req. B Req. A Req. B 

MCov (min) 33.30 14.11 34.43 10.52 Constellation of  

4 satellites MGap (min) 885.19 91.40 714.98 43.13 

MCov (min) 66.60 13.16 68.85 10.52 Constellation of  

8 satellites MGap (min) 851.90 35.67 680.55 19.08 
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Table 3. Constellation performance for target regions 3 and 4 

  Monitoring constellation Region 3 Region 4 

  14,  1tN m   Req. A Req. B Req. A Req. B 

MCov (min) 13.96 6.98 14.16 6.65 Constellation of  

4 satellites MGap (min) 967.70 105.16 1089.55 136.39 

MCov (min) 27.92 4.69 28.32 6.65 Constellation of  

8 satellites MGap (min) 953.75 50.71 1075.39 49.77 

  43,  3tN m   Req. A Req. B Req. A Req. B 

MCov (min) 12.19 5.72 12.96 4.01 Constellation of  

4 satellites MGap (min) 1048.90 102.87 1166.33 100.79 

MCov (min) 24.39 3.05 25.91 4.01 Constellation of  

8 satellites MGap (min) 1036.70 50.34 1153.37 49.20 

  29,  2tN m   Req. A Req. B Req. A Req. B 

MCov (min) 10.94 4.51 11.81 4.12 Constellation of  

4 satellites MGap (min) 1139.43 101.65 1153.06 118.48 

MCov (min) 21.89 4.51 23.63 4.12 Constellation of  

8 satellites MGap (min) 1128.49 49.66 1141.24 58.30 

  44,  3tN m   Req. A Req. B Req. A Req. B 

MCov (min) 9.98 2.49 10.73 2.68 Constellation of  

4 satellites MGap (min) 1126.03 100.52 1140.53 108.51 

MCov (min) 19.96 3.21 21.47 2.81 Constellation of  

8 satellites MGap (min) 1116.05 49.35 1129.80 48.70 

  15,  1tN m   Req. A Req. B Req. A Req. B 

MCov (min) 6.59 3.30 6.81 3.41 Constellation of  

4 satellites MGap (min) 1101.21 200.28 1116.57 230.24 

MCov (min) 13.18 3.30 13.62 3.41 Constellation of  

8 satellites MGap (min) 1094.62 48.53 1109.76 47.91 
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Due to the above mentioned properties of repeating orbits, the visibility intervals related to a 

specific region are repeated in longitude. For instance, the optimal constellations related to region 1 

preserve their performance over the regions illustrated in Figures 11(a) and 11(b), which refers to 

the cases 
 tN m

 even and 
 tN m

 odd, respectively. 

 

 

 

Fig. 11. Geographical regions where repeating constellations preserve their performance 
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6. Conclusions 

This paper describes an alternative method for designing LEO satellite constellations 

tailored to local observation. Symmetry-based assumptions used in early works on constellations 

are removed, since at first glance these assumptions appear restrictive for local purposes. All the 

satellites are supposed to be placed in circular, equally inclined orbits at the same altitude, in order 

to avoid differential actions by the 2J  perturbation on each of them. Repeating orbits are employed. 

As shown by Hanson et al. [13] these orbits are more effective; in addition, they allow predicting 

the constellation performance over the period of repetition. 

In this work, constellation design is based on some steps: first of all, the total duration of 

visibility is maximized for the first satellite that forms the constellation. Then, the motion of the 

remaining satellites is assumed to preserve the same visibility characteristics of the first, i.e. it is 

simply shifted in time. The determination of the optimal set of time delays between visible passes of 

distinct satellites allows identifying the optimal constellation configuration, with reference to two 

operational requirements, i.e. the maximization of the maximum duration coverage, or the 

minimization of the maximum revisit time. The visibility function, introduced in Section 4, 

constitutes a convenient way of representing the cascade of time intervals of visibility and gaps of 

non-visibility, and is used to define the correlation function, which measures the overlapping 

between visible passes of distinct satellites. A global search over the zeros of the correlation 

function allows determining the optimal constellation with reference to each of the two 

requirements. Some results of possible practical interest are reported in Section 5. 

The method described in this research was successfully applied by the authors to LEO 

constellation design [14] also with reference to hybrid requirements, associated to the situations 

when either the maximum revisit time or the maximum coverage duration is constrained. In 

addition, the correlation function was employed in [15] also for eccentric orbit constellation design. 

In that context, the minimization of the correlation function – and not the annihilation – was 

pursued, and constellations ensuring the continuous coverage of a target area were found, by 

minimizing the overlapping between visible passes. 

In conclusion, the correlation-based approach proposed in this paper seems quite efficient 

because computational effort is limited. This is mainly due to the analytical form of the correlation 

function, which, moreover, allows finding solutions with great accuracy. 
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Appendix 1. Physical constants 

The following physical constants are used in this paper: 

 Earth radius, 6378.165 kmER   

 Earth planetary constant, 3 2398604.3 km secE   

 Earth rotation rate, 5 17.292115 10  secE
    

 Earth oblateness coefficient, 3

2 1.082627 10J    

 

Appendix 2. Equatorial property of repeating ground tracks 

Ground tracks of repeating satellites have a typical reticular aspect, portrayed in Figures 1 

and 2. Grid   and grid   differ with regard to ascending and descending equatorial crossings, 

since they coincide in the former case, not in the latter. What will be demonstrated is that this 

feature depends on the sum 
 tN m

. 

To do this, let T     be the time interval between ascending and descending crossings. 

Their angular separation   is given by: 

  E ET T


   


         (36) 

For repeating satellites that complete tN  orbits in m nodal days the relationship (6) holds; hence, 

(36) becomes: 

 1
t

m

N

 

   
 

 (37) 

Grid   corresponds to  2   integertN     , grid   to 2 t tN N         integer : 

        
2

Grid :      1       so      2    integert

t t

m
N m

N N


    

 
      

 
 (38) 

        
2

Grid :      1       so      2 1   integert

t t t

m
N m

N N N

 
    

 
        

 
 (39) 

(38) and (39) state that grid   corresponds to  tN m  even, grid   to  tN m  odd. 
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