УДК 519.254

Гарантирующее оценивание траектории маневрирующего летательного аппарата с учетом ограничений на вектор ускорения

Мамаев А. А.^{1*}, Семенихин К. В.^{2**}

¹Инновационная фирма СНИИП-Атом, Расплетина, 5, Москва, 123060, Россия
²Московский авиационный институт (национальный исследовательский университет),
МАИ, Волоколомское шоссе, 4, Москва, А-80, ГСП-3, 125993, Россия

*e-mail: mamaevartem@gmail.ru

**e-mail: siemenkv@rambler.ru

Аннотация

Рассмотрена задача восстановления траектории маневрирующего ЛА при наличии ограничений на вектор ускорения на отдельных участках траектории. Разработан метод перехода от минимаксной постановки задачи оценивания к проблеме обобщенного линейного программирования с ограничениями в виде линейных матричных неравенств. Для численного определения гарантирующих оценок использованы средства системы МАТLAB.

Ключевые слова

модель наблюдения, задача минимаксного оценивания, гарантирующая оценка, эллипсоидальные ограничения, задача полуопределенного программирования

1. Введение

Данная статья посвящена разработке робастных алгоритмов оценивания траектории маневрирующего ЛА с учетом физических ограничений на параметры кинематической модели движения. На практике такая задача возникает при обработке результатов летных испытаний с целью определения соответствия реального движения ЛА заданной программе управления. Использование методов гарантирующего оценивания позволяет, с одной стороны, получать оценки, робастные по отношению к отклонениям статистических характеристик ошибок от их номинальных значений, а с другой стороны, эффективно использовать имеющиеся технические и физические ограничения на параметры движения.

В случае прямолинейного и равномерного движения размерность вектора параметров невелика, поэтому стандартные алгоритмы несмещенного оценивания позволяют достаточно точно восстанавливать траекторию движения по избыточной измерительной информации без учета априорных ограничений на координаты начального положения и вектора скорости. Для маневрирующего ЛА закон движения определяется значительно большим набором параметров, количество которых может быть сравнимо с числом моментов измерений. Это обстоятельство делает весьма актуальной проблему разработки алгоритмов, способных эффективно восстанавливать траекторию с учетом имеющейся априорной информации. В данной работе синтез оценок производится с учетом эллипсоидальных ограничений на вектор ускорения на различных участках траектории.

Для формализации задачи оценивания используется минимаксный подход, в соответствии с которым искомая оценка должна минимизировать гарантированное значение среднеквадратичной (с.к.) погрешности оценивания. Тем самым качество оценок характеризуется верхней границей с.к. погрешности на множестве неопределенности, содержащем возможные значения неопределенных параметров и характеристик. Эффективность методов минимаксного оценивания во многом зависит от сложности структуры множества неопределенности. Для построения минимаксных и доверительных оценок состояний динамических систем наиболее плодотворным оказался метод эллипсоидов [1-4]. В данной работе многомерная оптимизационная проблема минимаксного оценивания с множеством неопределенности в виде пересечения эллипсоидов сводится к задаче полуопределенного программирования [5]. Для решения подобного рода оптимизационных задач на сегодняшний день развиты мощные программные средства, реализованные в пакетах SeDuMi и CVX в среде MATLAB [6, 7]. Их применение к проблеме гарантирующего оценивания приводит к эффективным численным процедурам, способным обрабатывать значительный массив измерительных данных с учетом большого числа ограничений и высокой размерности вектора неизвестных параметров.

Исследования, проведенные в рамках данной статьи, поддержаны грантом Российского фонда фундаментальных исследований (№ 10-07-00482-а, тема «Разработка робастных методов оценивания по вероятностным критериям в стохастических системах со смешанной априорной неопределенностью»).

2. Описание модели движения ЛА и процесса наблюдения

Пусть x(t) обозначает вектор координат центра масс ЛА в декартовой системе координат $\{x_1, x_2, x_3\}$ в момент времени $t \in [0, T]$. Допустим, что на отрезке наблюдения

[0,T] траектория движения достаточно точно аппроксимируется сплайном второго порядка дефекта один с узлами $T_0=0 < T_1 < \ldots < T_r=T$ [8]. Это означает, что x(t) предполагается один раз непрерывно дифференцируемой функцией, которая на каждом из интервалов $\Delta_i = (T_{i-1}, T_i), i=1,\ldots,r$, является квадратичной. Поэтому закон движения ЛА определяется конечным набором параметров: вектором начального положения $\chi = x(0)$, вектором начальной скорости $v = \dot{x}(0)$ и векторами ускорений $w^{(i)} = \ddot{x}(t), t \in \Delta_i, i=1,\ldots,r$.

Таким образом, траектория движения имеет вид

$$x(t) = \chi + vt + \sum_{i=1}^{r} w^{(i)} \psi_i(t),$$

где функция $\psi_i(t)$ равна нулю всюду слева от Δ_i , на самом интервале квадратична $(t-T_{i-1})^2/2$, а справа от Δ_i она линейна $(T_i-T_{i-1})^2/2+(T_i-T_{i-1})(t-T_i)$.

Предположим, что известны опорные значения вектора начального положения χ^o и начальной скорости v^o . Они определяют опорную траекторию, описывающую равномерное и прямолинейное движение

$$x^{o}(t) = \chi^{o} + v^{o}t, \quad t \in [0, T]$$

Пусть также заданы границы отклонения истинных значений векторов от их опорных значений:

$$\sum_{i=1}^{3} \frac{(\chi_{j} - \chi_{j}^{o})^{2}}{\rho_{i}^{2}} \le 1, \quad \sum_{j=1}^{3} \frac{(v_{j} - v_{j}^{o})^{2}}{v_{i}^{2}} \le 1, \tag{1}$$

где ρ_j , υ_j — известные положительные константы. Эти ограничения могут быть связаны с предыдущими результатами слежения за траекторией ЛА. Ограничения на вектор ускорения определяются тактико-техническими характеристиками ЛА:

$$\sum_{j=1}^{3} \frac{(w_j^{(i)})^2}{\omega_j^2} \le 1, \quad i = 1, \dots, r,$$
(2)

где ω_{j} — известные положительные числа.

Теперь истинную траекторию можно представить следующим образом:

$$x(t) = x^{o}(t) + a(t)\theta, \quad \theta = \begin{bmatrix} \chi - \chi^{o} \\ v - v^{o} \\ w^{(1)} \\ \dots \\ w^{(r)} \end{bmatrix}, \quad a(t) = \begin{bmatrix} I & tI & \psi_{1}(t)I & \dots & \psi_{r}(t)I \end{bmatrix},$$
(3)

где θ — вектор неизвестных параметров размерности $p=3(r+2), a(t) \in \square$ ^{3×p} — известная матричная функция, I — единичная матрица.

Наблюдение за движением ЛА производится с помощью стационарного наземного измерительного комплекса, который позволяет определять направляющие косинусы ξ_1 , ξ_2 и дальность ξ_3 . Преобразование вектора x декартовых координат $\{x_1, x_2, x_3\}$ к вектору ξ измеряемых координат $\{\xi_1, \xi_2, \xi_3\}$ осуществляется по правилу

$$\xi = \Psi(x), \quad \Psi : \Box^3 \to \Box^3, \quad \xi_1 = x_1/|x|, \quad \xi_2 = x_2/|x|, \quad \xi_3 = |x|.$$

Измерения проводятся в фиксированные моменты времени со случайной аддитивной ошибкой $\varepsilon(t_{\scriptscriptstyle k})$:

$$\eta_k = \Psi(x(t_k)) + \varepsilon(t_k), \quad k = 1, \dots, N.$$
(4)

Ошибка измерений $\{\varepsilon(t_1),...,\varepsilon(t_N)\}$ представляет собой набор независимых гауссовских векторов с нулевым математическим ожиданием и известной положительно определенной ковариационной матрицей $\operatorname{cov}\{\varepsilon(t_k),\varepsilon(t_k)\}=W$.

Будем считать, что погрешность линеаризации уравнений (4) в окрестности опорной траектории пренебрежимо мала по сравнению со случайными ошибками наблюдений. Тогда от нелинейной модели регрессии (4) можно перейти к уравнению, линейному относительно вектора параметров θ:

$$\eta_k = \Psi(x^0(t_k)) + D(t_k)a(t_k)\theta + \varepsilon(t_k), \quad k = 1, \dots, N$$
(5)

где D(t) — матрица частных производных

$$\frac{\partial \Psi}{\partial x} = \begin{bmatrix} (x_2^2 + x_3^2)/|x|^3 & -x_1 x_2/|x|^3 & -x_1 x_3/|x|^3 \\ -x_1 x_2/|x|^3 & (x_1^2 + x_3^2)/|x|^3 & -x_2 x_3/|x|^3 \\ x_1/|x| & x_2/|x| & x_3/|x| \end{bmatrix},$$

вычисленная в точке $x = x^{o}(t)$.

Итак, будем считать, что неизвестная траектория определяется параметрической моделью (3), а наблюдения описываются уравнениями линейной регрессии (5).

3. Постановка задачи минимаксного оценивания

Цель работы состоит в разработке алгоритма восстановления траектории $x(t), t \in [0,T]$, по наблюдениям (5) с учетом ограничений на параметры движения (1), (2).

Будем рассматривать траекторию как элемент пространства квадратично интегрируемых вектор-функций $X = L_2([0,T]; \square^3)$, норма в котором определена по правилу

$$||x|| = \left(\frac{1}{T} \int_{0}^{T} |x(t)|^{2} dt\right)^{1/2}.$$

Представим модель наблюдения (3), (5) в векторной форме

$$x(t) = x^{o}(t) + a(t)\theta, \quad Y = A\theta + \varepsilon,$$

$$Y = \begin{bmatrix} \eta(t_1) - \Psi(x^o(t_1)) \\ \dots \\ \eta(t_N) - \Psi(x^o(t_N)) \end{bmatrix} \in \square^n, \quad \varepsilon = \begin{bmatrix} \varepsilon(t_1) \\ \dots \\ \varepsilon(t_N) \end{bmatrix} \in \square^n, \quad A = \begin{bmatrix} D(t_1)a(t_1) \\ \dots \\ D(t_N)a(t_N) \end{bmatrix} \in \square^{n \times p}.$$

$$(6)$$

где n = 3N — размерность вектора наблюдений Y. Вектор ошибок имеет ε нулевое среднее и известную ковариационную матрицу блочно-диагонального вида

$$\operatorname{cov}\{\varepsilon,\varepsilon\} = R = \operatorname{diag}[\underline{W,...,W}].$$

Вектор параметров $\theta \in \mathbb{R}^n$ принадлежит пересечению эллипсоидов

$$\Theta = \left\{ \theta \in \Box^{p} : \left\langle H_{l}\theta, \theta \right\rangle \leq 1, l = 1, \dots, s \right\}, \tag{7}$$

где $\langle .,. \rangle$ — скалярное произведение в пространстве векторов-столбцов, а s=r+2 — число эллипсоидальных ограничений (1), (2). При этом H_l — соответствующие весовые матрицы диагонального вида:

$$\begin{split} H_1 &= \operatorname{diag} \left[\rho_1^{-2}, \rho_2^{-2}, \rho_3^{-2}, 0, \dots, 0 \right], \quad H_2 &= \operatorname{diag} \left[0, 0, 0, \upsilon_1^{-2}, \upsilon_2^{-2}, \upsilon_3^{-2}, 0, \dots, 0 \right], \\ H_l &= \operatorname{diag} \left[\underbrace{0, \dots, 0}_{3(l-1)}, \omega_1^{-2}, \omega_2^{-2}, \omega_3^{-2}, 0, \dots, 0 \right], \quad l = 3, \dots, s. \end{split}$$

Рассмотрим произвольную линейную оценку

$$\widetilde{x}(t) = x^{\circ}(t) + (FY)(t), \quad t \in [0, T],$$

где $F: \square^n \to X$ — соответствующий линейный оператор. Класс линейных операторов оценивания обозначим через Λ . Качество оценки будем характеризовать величиной с.к. погрешности

$$\sigma_{\theta}(F) = \sqrt{\mathbb{E} \|\widetilde{x} - x\|^2} = \left(\frac{1}{T} \int_{0}^{T} \mathbb{E} |a(t)\theta - F(A\theta + \varepsilon)(t)|^2 dt\right)^{1/2}$$
(8)

(здесь и далее E — символ математического ожидания). Так как (8) зависит от вектора неизвестных параметров, задача минимизации с.к. погрешности является недоопределенной. Для корректной постановки этой задачи можно предложить два подхода: метод

несмещенного оценивания и метод минимаксной оптимизации. Первый подход основан на сужении класса оценок. Если рассматривать только несмещенные операторы оценивания F, т.е. FA = a, то (8) будет полностью определяться дисперсией процесса ($F\varepsilon$)(t) при любом значении вектора θ . Однако такое сужение класса оценок неоправданно ограничивает возможности обработки, как самих измерительных данных, так и априорной информации о значениях неизвестных параметров. Кроме того, при большой размерности вектора параметров зачастую возникает проблема мультиколлинеарности, которая приводит к неустойчивому поведению численных процедур несмещенного оценивания [9].

В данной статье используется иной подход. Он основан на принципах робастной статистики и минимаксной оптимизации [10,11]. Согласно этому подходу в качестве единого показателя точности оценок используется максимум с.к. погрешности на множестве неопределенности:

$$\overline{\sigma}(F) = \max_{\theta \in \Theta} \sigma_{\theta}(F). \tag{9}$$

Этот функционал называется гарантированным значением с. к. погрешности оценки $\widetilde{x}(t) = x^{o}(t) + (FY)(t)$.

Искомая оценка $\hat{x}(t) = x^o(t) + (\hat{F}Y)(t)$ определяется оператором \hat{F} , доставляющим минимум функционалу (9) на классе всех линейных операторов оценивания:

$$\hat{F} \in \underset{F \in \Lambda}{\operatorname{arg\,min}} \, \bar{\sigma}(F). \tag{10}$$

Оценку $\hat{x}(t)$ и оператор \hat{F} будем называть минимаксными.

4. Метод полуопределенного программирования

Для решения задачи минимаксной оптимизации функционала (8) необходимо иметь его аналитическое представление:

$$\sigma_{\theta}^{2}(F) = \operatorname{tr}[F^{*}FR] + \langle (FA - a)^{*}(FA - a)\theta, \theta \rangle,$$

здесь tr обозначает след матрицы, а G^* — сопряженный оператор для линейного оператора G, действующего из \Box^n в X. Любой такой оператор имеет представление $Gy = y_1g_1 + \ldots + y_ng_n$, где $y \in \Box^n$, а $g_1, \ldots, g_n \in X$. Поэтому произведение G^*G будет $n \times n$ матрицей с элементами

$$(G^*G)_{ij} = (g_i, g_j) = \frac{1}{T} \int_0^T g_i(t)g_j(t)dt, \quad i, j = 1, ..., n.$$

Максимум с.к. погрешности на множестве неопределенности, определяемом одним эллипсоидальным ограничением, также имеет аналитическое представление. Действительно,

если матрицы $C, H \in \Box^{p \times p}$ неотрицательно определенные (далее будем записывать это как $C \succeq O$ и $H \succeq O$, где O — нулевая матрица), то

$$\sup_{\theta:\langle H\theta, \theta \rangle \leq 1} \langle C\theta, \theta \rangle = \begin{cases} \left\| \sqrt{H^+} C \sqrt{H^+} \right\|, & \text{если im}[C] \subseteq \text{im}[H], \\ \infty, & \text{иначе.} \end{cases}$$

Здесь C^+ — псевдообратная матрица [12], $\operatorname{im}[C]$ — образ матрицы, т.е. линейная оболочка столбцов, $\|C\|$ — спектральная норма матрицы. Если $C \succeq O$, то $\|C\|$ равна максимуму частного $\langle Cu,u \rangle/\langle u,u \rangle$ по всем ненулевым векторам u. Поэтому норма допускает представление $\|C\| = \min\{\mu \colon \mu I \succeq C\}$, откуда после замены переменной $\theta = \sqrt{H^+}u$, $u \in \operatorname{im}[H]$, получаем

$$\sup_{\theta \langle H\theta, \theta \rangle \leq 1} \langle C\theta, \theta \rangle = \min \{ \mu : \mu H \succeq C \}.$$

Теперь заметим, что исходное множество неопределенности (7) можно представить в виде пересечения эллипсоидов

$$\Theta = \bigcap_{\tau \in \mathsf{T}} \Theta_{\tau}, \quad \Theta_{\tau} = \left\{ \theta \in \Box^{p} : \left\langle H(\tau)\theta, \theta \right\rangle \leq 1 \right\},$$

где T — множество s -мерных векторов с неотрицательными координатами, сумма которых равна единице, а $H(\tau) = \tau_1 H_1 + \ldots + \tau_s H_s$. Делая замену $\lambda = \mu \tau$, получаем

$$\max_{\theta \in \Theta} \langle C\theta, \theta \rangle \leq \inf_{\tau \in T} \sup_{\theta \in \Theta_{\tau}} \langle C\theta, \theta \rangle = \inf \left\{ \langle \lambda, e \rangle : \lambda \in \Box^{s}, \lambda \geq 0, H(\lambda) \succeq C \right\},$$

где e — вектор с единичными компонентами. При отсутствии у матрицы C кратных собственных значений указанное выше неравенство превращается в равенство [13]. Множество указанных матриц открыто и всюду плотно. Это дает право утверждать, что в типичном случае задача о вычислении гарантированного значения с.к. погрешности (9), как задача максимизации квадратичной формы при эллипсоидальных ограничениях, эквивалентна минимизации по λ линейно формы $\mathrm{tr} \big[RF^*F\big] + \langle \lambda, e \rangle$ с учетом линейных матричных неравенств $\mathrm{diag}\big[\lambda_1, \ldots, \lambda_s\big] \succeq O, H(\lambda) \succeq (FA-a)^*(FA-a)$. Оптимизационная проблема такого типа называется задачей полуопределенного программирования [14].

Таким образом, для с.к. погрешности минимаксной оценки можно указать верхнюю границу:

$$\min_{F \in \Lambda} \overline{\sigma}^{2}(F) \leq \inf_{F \in \Lambda, \lambda \in \mathbb{N}^{s}} \Big\{ \operatorname{tr} \Big[RF^{*}F \Big] + \langle \lambda, e \rangle : \lambda \geq 0, H(\lambda) \succeq (FA - a)^{*} (FA - a) \Big\}. \tag{11}$$

Если оператор \hat{F} (вместе с некоторым вектором $\hat{\lambda}$) доставляет минимум правой части данного неравенства, то он и соответствующая ему оценка $\hat{x}(t) = x^o(t) + (\hat{F}Y)(t)$ будут называться *гарантирующими*. О качестве оценки $\hat{x}(t)$ можно судить по значению правой части (11), которое дает верхнюю границу для значения функционала $\bar{\sigma}^2(F)$. Поэтому если в (11) имеет место равенство, то гарантирующая оценка будет минимаксной. Однако доказательство равенства в общем случае, как и опровергающие примеры, пока отсутствуют. Некоторые достаточные условия получены в [13].

Для сведения оптимизационной задачи, сформулированной в правой части (11), к задаче полуопределенного программирования сделаем замену переменной $L = F^*F$ и добавим новое ограничение $L \succeq F^*F$. Тогда в силу $R \succeq O$ рассматриваемая задача минимизации будет равносильна следующей:

$$\operatorname{tr}[RL] + \langle \lambda, e \rangle \to \min_{F, L, \lambda},$$

$$H(\lambda) - (FA - a)^* (FA - a) \succ O, \quad L - F^* F \succ O, \quad \lambda \ge 0.$$
(12)

где переменные F, L, λ пробегают соответственно: семейство линейных операторов оценивания Λ , пространство симметричных матриц \square , и множество \square .

Преобразуем матричные неравенства так, чтобы они стали линейными по переменной F . Согласно лемме о неотрицательной определенности блочной матрицы [12] для любых $A,B\succeq O$ при условии, что существует B^{-1} , справедливо утверждение

$$A - \Gamma^* B^{-1} \Gamma \succeq O \iff \begin{bmatrix} A & \Gamma^* \\ \Gamma & B \end{bmatrix} \succeq O, \tag{13}$$

(здесь и далее «*» применительно к матрице обозначает операцию транспонирования).

Следовательно, задача (12) превращается в задачу минимизации линейной формы ${\rm tr}[LR]+\langle \lambda,e \rangle$ по переменным F,L,λ , удовлетворяющим линейным матричным неравенствам

$$\begin{bmatrix} H(\lambda) & (FA-a)^* \\ FA-a & I \end{bmatrix} \succeq O, \quad \begin{bmatrix} L & F^* \\ F & I \end{bmatrix} \succeq O, \quad \operatorname{diag}[\lambda_1, ..., \lambda_s] \succeq O.$$

Однако данная задача полуопределенного программирования содержит переменную F, пробегающую бесконечномерное пространство операторов оценивания Λ . Даже если зафиксировать образ этих операторов, считая (Fy)(t) сплайном с заданными узлами $\{T_0,T_1,...,T_r\}$, то задача по-прежнему будет иметь большую размерность. Действительно,

число переменных достигает n(n+p+1/2)+s, а размер матрицы, определяющей ограничения, равен $(n+3p)\times(n+3p)$. В силу условия статистической избыточности количество наблюдений n должно быть, как минимум, на порядок больше числа параметров p и количества ограничений s. Поэтому полученная задача оказывается слишком трудоемкой для применения численных процедур полуопределенного программирования.

Для сокращения числа переменных воспользуемся структурой минимаксного оператора. В [13] доказано, что искомый оператор имеет вид

$$(FY)(t) = a(t)KA^*R^{-1}Y = a(t)K\sum_{k=1}^{N} (D(t_k)a(t_k))^*W^{-1}Y(t_k), \quad K \in \square_s^{p \times p},$$

причем $(FA-a)^*(FA-a)=(KJ-I)^*S(KJ-I)$, где $S=a^*a$ и $J=A^*R^{-1}A$ — две $p\times p$ матрицы, определяемые структурой модели наблюдения (6). Далее без ограничения общности можно считать, что S и J обратимы. С использованием указанных соотношений задача (12) принимает вид:

$$\operatorname{tr}[SKJK] + \langle \lambda, e \rangle \to \min_{K,\lambda},$$

 $H(\lambda) - (KJ - I)^* S(KJ - I) \succeq O, \quad \lambda \geq 0.$

Введем новую переменную $M = KJK \in \square$ у и добавим соответствующее ограничение:

$$\operatorname{tr}[MS] + \langle \lambda, e \rangle \to \min_{K,M,\lambda},$$

$$H(\lambda) - (KJ - I)^* S(KJ - I) \succeq O, \quad M - KJK \succeq O, \quad \lambda \ge 0.$$

Тогда в силу (13) приходим к следующей формулировке:

$$\operatorname{tr}\left[\operatorname{diag}\left\{K,M,\lambda_{1},\ldots,\lambda_{s}\right\}\operatorname{diag}\left\{O,S,0,\ldots,0\right\}\right] \to \min_{K,M,\lambda},$$

$$K,M \in \square^{p \times p}, \lambda \in \square^{s}: \operatorname{diag}\left\{\begin{bmatrix}H(\lambda) & (KJ-I)^{*}\\KJ-I & S^{-1}\end{bmatrix},\begin{bmatrix}M & K\\K & J^{-1}\end{bmatrix},\lambda_{1},\ldots,\lambda_{s}\right\} \succeq O.$$

$$(14)$$

Теперь сформулируем основной результат статьи.

Eсли $(\hat{K}, \hat{M}, \hat{\lambda})$ — решение задачи полуопределенного программирования (14), то искомая гарантирующая оценка $\hat{x}(t)$ определяется по формуле

$$\hat{x}(t) = x^{o}(t) + a(t)\hat{K}\sum_{k=1}^{N} (D(t_{k})a(t_{k}))^{*}W^{-1}Y(t_{k}),$$
(15)

а для значения ее с.к. погрешности справедлива верхняя граница

$$\mathsf{E} \| \hat{x} - x \|^{2} \le \operatorname{tr} \left[\hat{M} S \right] + \left\langle \hat{\lambda}, e \right\rangle \quad \forall \ \theta \in \Theta. \tag{16}$$

Отметим особенности оптимизационной задачи (14), к которой в итоге была сведена

проблема минимаксного оценивания траектории ЛА. Во-первых, (14) — задача полуопределенного программирования, причем она записана в форме, пригодной для применения специализированных пакетов выпуклого программирования, реализованных на платформе МАТLAB [6,7]. Во-вторых, в (14) всего $p^2 + p + s$ переменных, а матрица ограничений имеет размерность $4p \times 4p$. Тем самым размерность полученной задачи определяется только числом неизвестных параметров и количеством эллипсоидальных ограничений, но не зависит от числа наблюдений n. Поэтому вычислительная сложность задачи (14) существенно ниже, чем для (12).

Эффективность разработанной методики на конкретном численном примере продемонстрирована в следующем разделе.

5. Численный эксперимент

Рассмотрим задачу восстановления траектории движения самолета по измерениям дальности и направляющих косинусов с учетом ограничений на параметры кинематической модели [13,15–17].

Допустим, что на интервале времени от 0 до $T=70\,c$ самолет выполняет следующий маневр: в момент $\bar{t}=30\,c$ начинает снижение с высоты $\bar{h}=5000\,m$ и завершает его в момент $\underline{t}=50\,c$ на высоте $\underline{h}=2000\,m$. При этом движение центра масс самолета описывается уравнениями

$$x_{1}(t) = \chi_{1} + v_{1}t, \quad x_{2}(t) = \chi_{2} + v_{2}t, \quad x_{3}(t) = \begin{cases} \frac{\underline{h}}{(\overline{h} + \underline{h})} + \frac{(\overline{h} - \underline{h})}{2} \cdot \cos\left(\pi \cdot \frac{t - \underline{t}}{\overline{t} - \underline{t}}\right), & \underline{t} < t \leq \overline{t}, \\ \overline{h}, & \overline{t} < t, \end{cases}$$

где начальное положение и начальная скорость имеют координаты

$$\chi_1 = 1000 \text{ M}, \quad \chi_2 = 1000 \text{ M}, \quad \chi_3 = \overline{h}, \quad v_1 = 212 \text{ M/c}, \quad v_2 = 212 \text{ M/c} \quad v_3 = 0 \text{ M/c}.$$

Для использования сплайновой модели движения выберем r=7 узлов (не считая $T_0=0$):

$$T_1 = 10 c$$
, $T_2 = 20 c$, $T_3 = 30 c$, $T_4 = 40 c$, $T_5 = 50 c$, $T_6 = 60 c$, $T_7 = 70 c$.

Опорные значения координат начального положения и начальной скорости положим равными:

$$\chi_1^o = 1000 \text{ M}, \quad \chi_2^o = 1000 \text{ M}, \quad \chi_3^o = 5000 \text{ M}, \quad v_1^o = 212 \text{ M/c}, \quad v_2^o = 212 \text{ M/c}, \quad v_3^o = 0 \text{ M/c}.$$

На отклонения истинных значений параметров от их опорных значений наложим ограничения вида (1):

$$\sqrt{\sum_{j=1}^{3} \left(\chi_{j} - \chi_{j}^{o}\right)^{2}} \leq 100 \, \text{M}, \quad \sqrt{\sum_{j=1}^{3} \left(v_{j} - v_{j}^{o}\right)^{2}} \leq 10 \, \text{M/c}.$$

Поскольку моменты начала \bar{t} и окончания \underline{t} маневра считаются априорно неизвестными, на векторы ускорения, соответствующие разным интервалам времени, наложим одинаковые ограничения вида (2):

$$\sqrt{\sum_{j=1}^{3} \left(w_{j}^{(i)}\right)^{2}} \leq 37 \ \text{m/c}^{2}, \quad i = 1, ..., 7.$$

Интервал между измерениями возьмем равным $1\,c$, а ковариационную матрицу вектора ошибок $\varepsilon(t_{\iota})$ положим равной:

$$W = \begin{bmatrix} 60.4 \cdot 10^{-6} & 8.88 \cdot 10^{-6} & -4.168 \cdot 10^{-3} \\ 8.88 \cdot 10^{-6} & 82.8 \cdot 10^{-6} & 6.126 \cdot 10^{-3} \\ -4.168 \cdot 10^{-3} & 6.126 \cdot 10^{-3} & 80.63 \end{bmatrix}.$$

Для демонстрации эффективности гарантированной оценки $\hat{x}(t)$, рассмотрим также наилучшую линейную несмещенную оценку $\tilde{x}^u(t) = x^o(t) + (F^uY)(t)$, задаваемую оператором Гаусса—Маркова $(F^uY)(t) = a(t)J^{-1}A^*R^{-1}Y$.

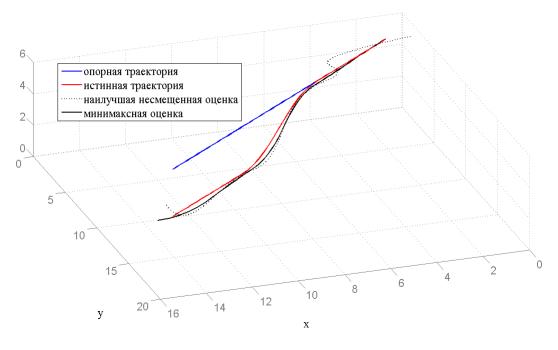


Рисунок 1

Результаты восстановления траектории представлены на рис. 1. Ниже приведены гарантированные значения с.к. погрешности для найденных оценок $\hat{x}(t)$ и $\tilde{x}^u(t)$

$$\bar{\sigma}(\hat{F}) = 517 \text{ M}, \quad \bar{\sigma}(F^u) = 1158 \text{ M}.$$

Таким образом, использование априорных ограничений позволило существенно повысить точность восстановления траектории по сравнению с оценкой Гаусса—Маркова.

6. Заключение

В данной работе рассмотрена задача оценивания траектории маневрирующего ЛА при наличии ограничений на вектор ускорения на отдельных участках траектории. Разработан метод сведения минимаксной постановки этой задачи к проблеме полуопределенного программирования. Для программной реализации разработанного алгоритма гарантирующего оценивания использованы средства системы МАТLAB, позволяющие производить численную оптимизацию линейных форм с учетом линейных матричных неравенств.

Библиографический список

1. Черноусько Ф.Л. Оценивание фазового состояния динамических систем. Метод эллипсоидов. М.: Наука, 1988.

- 2. Kurzhanski A.B., Valyi I. Ellipsoidal calculus for estimation and control. Boston: Birkhäuser, 1997.
- 3. Киселёв О.Н., Поляк Б.Т. Эллипсоидальное оценивание по обобщенному критерию // Автоматика и телемеханика. 1991. № 9. С. 133–144.
- 4. Ананьев Б.И. Многошаговые стохастические включения специального вида и их мультиоценки // Автоматика и телемеханика. 2007. № 11. С. 3–11.
- 5. Boyd S., Vandenberghe L. Convex optimization. Cambridge: Cambridge Univ. Press, 2004.
- 6. Sturm J.F. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones // Optim. Methods Software. 1999. V. 11. No. 12. P. 625–653.
- 7. Grant M., Boyd S. CVX users' guide (for CVX version 1.21). 2011. http://cvxr.com/cvx/download
- 8. Корнейчук Н.П. Сплайны в теории приближения. М.: Наука, 1984.
- 9. Демиденко Е.З. Линейная и нелинейная регрессии. М.: Финансы и статистика, 1981.
- 10. Вальд А. Статистические решающие функции // Позиционные игры. М.: Наука, 1967.
- 11. Куржанский А.Б. Управление и оценивание в условиях неопределенности. М.: Наука, 1977.
- 12. Алберт А. Регрессия, псевдоинверсия и рекуррентное оценивание. М.: Наука, 1977.
- 13. 14. Ben-Tal A., El Ghaoui L., Nemirovski A. Robust semidefinite programming. Handbook on semidefinite programming. Kluwer Acad. Publ., 2000.
- 14. Жданюк Б.Ф. Основы статистической обработки траекторных измерений. М.: Сов. радио, 1978.
- 15. Бедин Д.А., Пацко В.С., Федотов А.А., Беляков А.В., Строков К.В. Восстановление траектории самолета по неточным измерениям // Автоматика и телемеханика. 2010. № 2. С. 17–30.
- 16. Мамаев А.А.. Семенихин К.В. Минимаксное оценивание траектории движения летательного аппарата при наличии эллипсоидальных ограничений на параметры кинематической модели // Электронный журнал «Труды МАИ». 2011. № 43, www.mai.ru/science/trudy